Data Science, Analytics and Machine Learning with R -  Patricia Belfiore,  Luiz Paulo Favero,  Rafael de Freitas Souza

Data Science, Analytics and Machine Learning with R (eBook)

eBook Download: PDF | EPUB
2023 | 1. Auflage
660 Seiten
Elsevier Science (Verlag)
978-0-323-85923-3 (ISBN)
131,00 € inkl. MwSt
Systemvoraussetzungen
147,19 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Data Science, Analytics and Machine Learning with R explains the principles of data mining and machine learning techniques and accentuates the importance of applied and multivariate modeling. The book emphasizes the fundamentals of each technique, with step-by-step codes and real-world examples with data from areas such as medicine and health, biology, engineering, technology and related sciences. Examples use the most recent R language syntax, with recognized robust, widespread and current packages. Code scripts are exhaustively commented, making it clear to readers what happens in each command. For data collection, readers are instructed how to build their own robots from the very beginning. In addition, an entire chapter focuses on the concept of spatial analysis, allowing readers to build their own maps through geo-referenced data (such as in epidemiologic research) and some basic statistical techniques. Other chapters cover ensemble and uplift modeling and GLMM (Generalized Linear Mixed Models) estimations, both linear and nonlinear. - Presents a comprehensive and practical overview of machine learning, data mining and AI techniques for a broad multidisciplinary audience - Serves readers who are interested in statistics, analytics and modeling, and those who wish to deepen their knowledge in programming through the use of R - Teaches readers how to apply machine learning techniques to a wide range of data and subject areas - Presents data in a graphically appealing way, promoting greater information transparency and interactive learning

Dr. Fávero is a Full Professor at the Economics, Business Administration and Accounting College and at the Polytechnic School of the University of Sao Paulo (FEAUSP and EPUSP), where he teaches Data Science, Data Analysis, Multivariate Modeling, Machine and Deep Learning and Operational Research to undergraduate, Master's and Doctorate students. He has a Post-Doctorate degree in Data Analysis and Econometrics from Columbia University in New York. He is a tenured Professor by FEA/USP (with greater focus on Quantitative Modeling). He has a degree in Engineering from USP Polytechnic School, a post-graduate degree in Business Administration from Getúlio Vargas Foundation (FGV/SP), and he has received the titles of Master and PhD in Data Science and Quantitative Methods applied to Organizational Economics from FEA/USP. He is a Visiting Professor at the Federal University of Sao Paulo (UNIFESP), Dom Cabral Foundation, Getúlio Vargas Foundation, FIA, FIPE and MONTVERO. He has authored or co-authored 9 books and he is the founder and former editor-in-chief of the International Journal of Multivariate Data Analysis. He is member and founder of the Latin American Academy of Data Science. He is a consultant to companies operating in sectors such as retail, industry, mining, banks, insurance and healthcare, with the use of Data Analysis, Machine and Deep Learning, Big Data and AI platforms, such as R, Python, SAS, Stata and IBM SPSS. Dr. Fávero is a Full Professor at the Economics, Business Administration and Accounting College and at the Polytechnic School of the University of Sao Paulo (FEAUSP and EPUSP), where he teaches Data Science, Data Analysis, Multivariate Modeling, Machine and Deep Learning and Operational Research to undergraduate, Master's and Doctorate students. He has a Post-Doctorate degree in Data Analysis and Econometrics from Columbia University in New York. He is a tenured Professor by FEA/USP (with greater focus on Quantitative Modeling). He has a degree in Engineering from USP Polytechnic School, a post-graduate degree in Business Administration from Getúlio Vargas Foundation (FGV/SP), and he has received the titles of Master and PhD in Data Science and Quantitative Methods applied to Organizational Economics from FEA/USP. He is a Visiting Professor at the Federal University of Sao Paulo (UNIFESP), Dom Cabral Foundation, Getúlio Vargas Foundation, FIA, FIPE and MONTVERO. He has authored or co-authored 9 books and he is the founder and former editor-in-chief of the International Journal of Multivariate Data Analysis. He is member and founder of the Latin American Academy of Data Science. He is a consultant to companies operating in sectors such as retail, industry, mining, banks, insurance and healthcare, with the use of Data Analysis, Machine and Deep Learning, Big Data and AI platforms, such as R, Python, SAS, Stata and IBM SPSS.
Data Science, Analytics and Machine Learning with R explains the principles of data mining and machine learning techniques and accentuates the importance of applied and multivariate modeling. The book emphasizes the fundamentals of each technique, with step-by-step codes and real-world examples with data from areas such as medicine and health, biology, engineering, technology and related sciences. Examples use the most recent R language syntax, with recognized robust, widespread and current packages. Code scripts are exhaustively commented, making it clear to readers what happens in each command. For data collection, readers are instructed how to build their own robots from the very beginning. In addition, an entire chapter focuses on the concept of spatial analysis, allowing readers to build their own maps through geo-referenced data (such as in epidemiologic research) and some basic statistical techniques. Other chapters cover ensemble and uplift modeling and GLMM (Generalized Linear Mixed Models) estimations, both linear and nonlinear. - Presents a comprehensive and practical overview of machine learning, data mining and AI techniques for a broad multidisciplinary audience- Serves readers who are interested in statistics, analytics and modeling, and those who wish to deepen their knowledge in programming through the use of R- Teaches readers how to apply machine learning techniques to a wide range of data and subject areas- Presents data in a graphically appealing way, promoting greater information transparency and interactive learning
Erscheint lt. Verlag 23.1.2023
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 0-323-85923-2 / 0323859232
ISBN-13 978-0-323-85923-3 / 9780323859233
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 76,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43