Methodologies of Multi-Omics Data Integration and Data Mining -

Methodologies of Multi-Omics Data Integration and Data Mining (eBook)

Techniques and Applications

Kang Ning (Herausgeber)

eBook Download: PDF
2023 | 1st ed. 2023
XI, 167 Seiten
Springer Nature Singapore (Verlag)
978-981-19-8210-1 (ISBN)
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book features multi-omics big-data integration and data-mining techniques. In the omics age, paramount of multi-omics data from various sources is the new challenge we are facing, but it also provides clues for several biomedical or clinical applications. This book focuses on data integration and data mining methods for multi-omics research, which explains in detail and with supportive examples the 'What', 'Why' and 'How' of the topic. The contents are organized into eight chapters, out of which one is for the introduction, followed by four chapters dedicated for omics integration techniques focusing on several omics data resources and data-mining methods, and three chapters dedicated for applications of multi-omics analyses with application being demonstrated by several data mining methods. This book is an attempt to bridge the gap between the biomedical multi-omics big data and the data-mining techniques for the best practice of contemporary bioinformatics and the in-depth insights for the biomedical questions. It would be of interests for the researchers and practitioners who want to conduct the multi-omics studies in cancer, inflammation disease, and microbiome researches.

Kang Ning, Professor, PI of Microbial Bioinformatics Group, Director of Department of Bioinformatics and Systems Biology, School of Life Science and Technology, Huazhong University of Science and Technology. He obtained his BS in Computer Science from USTC and PhD in Bioinformatics from NUS. He has had his Post-Doc training in Bioinformatics from University of Michigan. Dr. Ning has more than 20 years of experiences in bioinformatics for omics big-data integration, mirobiome analyses and single-cell analyses. His current research interests include AI method for multi-omics especially metagenomics data mining, as well as their applications. He is also interested in synthetic biology and high-performance-computation. Dr. Ning is the leading or corresponding author of over 100 papers and reviews on leading journals including PNAS, Gut, Annals of the Rheumatic Diseases, Genome Biology, Genome Medicine, Microbiome, Briefings in Bioinformatics, Bioinformatics, Nucleic Acids Research, which have more than 5,000 citations. He has been the committee members of several national bioinformatics and biology big-data committees in China, such as the deputy director of Genomic Informatics Branch of China Bioinformatics Society. He is also the distinguished member of China Computer Federation. He serves as an editorial board member of several journals inlcuding  Genomics Proteomics and Bioinformatics, Microbiology Spectrum, iMeta and Scientific Reports, and served as reviewers for several international funding agencies including UK-BBSRC and UK-NERC. He has collaborations with biologists, doctors and statisticians in many countries, and has given talks on international conferences for many times. 
Erscheint lt. Verlag 15.1.2023
Reihe/Serie Translational Bioinformatics
Translational Bioinformatics
Zusatzinfo XI, 167 p. 1 illus.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik Statistik
Medizin / Pharmazie Studium
Naturwissenschaften Biologie Genetik / Molekularbiologie
Schlagworte Artificial Intelligence • Big-data • Data Mining • microbiome • Multiple omics
ISBN-10 981-19-8210-4 / 9811982104
ISBN-13 978-981-19-8210-1 / 9789811982101
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly (Verlag)
49,90
Achieve data excellence by unlocking the full potential of MongoDB

von Marko Aleksendrić; Arek Borucki; Leandro Domingues …

eBook Download (2024)
Packt Publishing (Verlag)
53,99