Methodologies of Multi-Omics Data Integration and Data Mining (eBook)
XI, 167 Seiten
Springer Nature Singapore (Verlag)
978-981-19-8210-1 (ISBN)
Kang Ning, Professor, PI of Microbial Bioinformatics Group, Director of Department of Bioinformatics and Systems Biology, School of Life Science and Technology, Huazhong University of Science and Technology. He obtained his BS in Computer Science from USTC and PhD in Bioinformatics from NUS. He has had his Post-Doc training in Bioinformatics from University of Michigan. Dr. Ning has more than 20 years of experiences in bioinformatics for omics big-data integration, mirobiome analyses and single-cell analyses. His current research interests include AI method for multi-omics especially metagenomics data mining, as well as their applications. He is also interested in synthetic biology and high-performance-computation. Dr. Ning is the leading or corresponding author of over 100 papers and reviews on leading journals including PNAS, Gut, Annals of the Rheumatic Diseases, Genome Biology, Genome Medicine, Microbiome, Briefings in Bioinformatics, Bioinformatics, Nucleic Acids Research, which have more than 5,000 citations. He has been the committee members of several national bioinformatics and biology big-data committees in China, such as the deputy director of Genomic Informatics Branch of China Bioinformatics Society. He is also the distinguished member of China Computer Federation. He serves as an editorial board member of several journals inlcuding Genomics Proteomics and Bioinformatics, Microbiology Spectrum, iMeta and Scientific Reports, and served as reviewers for several international funding agencies including UK-BBSRC and UK-NERC. He has collaborations with biologists, doctors and statisticians in many countries, and has given talks on international conferences for many times.
Erscheint lt. Verlag | 15.1.2023 |
---|---|
Reihe/Serie | Translational Bioinformatics | Translational Bioinformatics |
Zusatzinfo | XI, 167 p. 1 illus. |
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Mathematik ► Statistik | |
Medizin / Pharmazie ► Studium | |
Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie | |
Schlagworte | Artificial Intelligence • Big-data • Data Mining • microbiome • Multiple omics |
ISBN-10 | 981-19-8210-4 / 9811982104 |
ISBN-13 | 978-981-19-8210-1 / 9789811982101 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 4,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich