Randextrema von Funktionen mit zwei Variablen. In runden sowie beliebigen Definitionsbereichen (eBook)
Soll an einer Funktion mit zwei Variablen (häufig auch als dreidimensionale Funktion bezeichnet) innerhalb eines Definitionsbereiches der absolut höchste oder tiefste Punkt ermittelt werden, so reicht es oft nicht aus, diese Funktion nur auf lokale Extrema zu untersuchen. So hat bereits die einfache Funktion f(x,y)=x^2+y^2 an jedem beliebigen Punkt höhere z-Werte als das lokale Extremum der Funktion, da dieser ein Tiefpunkt ist. Deswegen ist es unerlässlich, auch die Werte der Funktion am Rand des Definitionsbereiches zu ermitteln.
In dieser Facharbeit werde ich eine selbst entwickelte Lösungsstrategie vorstellen, um die höchsten, beziehungsweise tiefsten Werte an dem Rand einer Funktion mit zwei Variablen innerhalb eines runden Definitionsbereichs zu ermitteln. Diese Strategie lässt sich jedoch auch für Definitionsbereiche anwenden, welche nicht rund oder sogar unstetig sind.
Diese Facharbeit wird genau diese Ermittlung der Randwerte einer Funktion mit zwei Variablen in runden, sowie unstetigen Definitionsbereichen anhand einer detaillierten und strukturierten Strategie darstellen. Es wird sowohl die Strategie selbst und ihre Herleitung erklärend veranschaulicht und an Beispielen vorgerechnet. Jegliche neu entstandenen Begriffe werden in dem Definitionsverzeichnis noch einmal erklärt. Bilder und Grafiken, die das Verstehen der einzelnen Rechenschritte unterstützen, sind im Anhang zusätzlich aufgeführt.
Erscheint lt. Verlag | 9.1.2023 |
---|---|
Verlagsort | München |
Sprache | deutsch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Schlagworte | 3d-funktionen • Definitinsbereich • Randextrema • Randfunktion |
ISBN-10 | 3-346-78934-9 / 3346789349 |
ISBN-13 | 978-3-346-78934-1 / 9783346789341 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,2 MB
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich