Numerical Methods Using Kotlin - PhD Li  Haksun

Numerical Methods Using Kotlin (eBook)

For Data Science, Analysis, and Engineering

(Autor)

eBook Download: PDF
2022 | 1st ed.
XXII, 899 Seiten
Apress (Verlag)
978-1-4842-8826-9 (ISBN)
Systemvoraussetzungen
66,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This in-depth guide covers a wide range of topics, including chapters on linear algebra, root finding, curve fitting, differentiation and integration, solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustrations to help even beginners get started.

In this book, you'll implement numerical algorithms in Kotlin using NM Dev, an object-oriented and high-performance programming library for applied and industrial mathematics. Discover how Kotlin has many advantages over Java in its speed, and in some cases, ease of use. In this book, you'll see how it can help you easily create solutions for your complex engineering and data science problems. 

After reading this book, you'll come away with the knowledge to create your own numerical models and algorithms using the Kotlin programming language. 

What You Will Learn
  • Program in Kotlin using a high-performance numerical library
  • Learn the mathematics necessary for a wide range of numerical computing algorithms
  • Convert ideas and equations into code
  • Put together algorithms and classes to build your own engineering solutions
  • Build solvers for industrial optimization problems
  • Perform data analysis using basic and advanced statistics
Who This Book Is For

Programmers, data scientists, and analysts with prior experience programming in any language, especially Kotlin or Java.


Haksun Li, PhD, is founder of NM Group, a scientific and mathematical research company. He has the vision of 'Making the World Better Using Mathematics'. Under his leadership, the firm serves worldwide brokerage houses and funds, multinational corporations and very high net worth individuals. Haksun is an expert in options trading, asset allocation, portfolio optimization and fixed-income product pricing. He has coded up a variety of numerical software, including SuanShu (a library of numerical methods), NM Dev (a library of numerical methods), AlgoQuant (a library for financial analytics), NMRMS (a portfolio management system for equities), and supercurve (a fixed-income options pricing system). Prior to this, Haksun was a quantitative trader/quantitative analyst with multiple investment banks. He has worked in New York, London, Tokyo, and Singapore. Additionally, Haksun is the vice dean of the Big Data Finance and Investment Institute of Fudan University, China. He was an adjunct professor with multiple universities. He has taught at the National University of Singapore (mathematics), Nanyang Technological University (business school), Fudan University (economics), as well as Hong Kong University of Science and Technology (mathematics). Dr. Haksun Li has a B.S. and M.S. in pure and financial mathematics from the University of Chicago, and an M.S. and a PhD in computer science and engineering from the University of Michigan, Ann Arbor.

This in-depth guide covers a wide range of topics, including chapters on linear algebra, root finding, curve fitting, differentiation and integration, solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustrations to help even beginners get started.In this book, you'll implement numerical algorithms in Kotlin using NM Dev, an object-oriented and high-performance programming library for applied and industrial mathematics. Discover how Kotlin has many advantages over Java in its speed, and in some cases, ease of use. In this book, you'll see how it can help you easily create solutions for your complex engineering and data science problems. After reading this book, you'll come away with the knowledge to create your own numerical models and algorithms using the Kotlin programming language. What You Will LearnProgram in Kotlin using a high-performance numerical libraryLearn the mathematics necessary for a wide range of numerical computing algorithmsConvert ideas and equations into codePut together algorithms and classes to build your own engineering solutionsBuild solvers for industrial optimization problemsPerform data analysis using basic and advanced statisticsWho This Book Is ForProgrammers, data scientists, and analysts with prior experience programming in any language, especially Kotlin or Java.
Erscheint lt. Verlag 30.12.2022
Zusatzinfo XXII, 899 p. 309 illus., 252 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Programmiersprachen / -werkzeuge Java
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte algorithms • Analysis • Code • Computational • Data • Data Science • Engineering • Java • JVM • Kotlin • Numerical • Open Source • programming • Software • source
ISBN-10 1-4842-8826-2 / 1484288262
ISBN-13 978-1-4842-8826-9 / 9781484288269
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 44,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Einführung, Ausbildung, Praxis

von Christian Ullenboom

eBook Download (2023)
Rheinwerk Computing (Verlag)
39,92
Moderne GUIs für RIAs und Java-Applikationen

von Ralph Steyer

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
42,99