Inverse Probleme mit stochastisch modellierten Messdaten (eBook)

Stochastische und numerische Methoden der Diskretisierung und Optimierung
eBook Download: PDF
2022 | 1. Aufl. 2022
XVI, 289 Seiten
Springer Berlin Heidelberg (Verlag)
978-3-662-66343-1 (ISBN)

Lese- und Medienproben

Inverse Probleme mit stochastisch modellierten Messdaten - Mathias Richter, Stefan Schäffler
Systemvoraussetzungen
42,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Wesentliche Zielsetzung dieses Buchs ist eine in sich abgeschlossene Darstellung der zur Lösung inverser Probleme notwendigen Kenntnisse von der mathematischen Analyse bis zur numerischen Lösung. Konkrete Anwendungsfälle aus Naturwissenschaften und Technik geben den Umfang der benötigten mathematischen Methoden vor. Dazu gehört insbesondere die stochastische Modellierung der unvorhersehbaren Störungen von Messdaten, die bisher in Lehrbüchern zu inversen und schlecht gestellten Problemen nicht berücksichtigt wird. Die stochastische Modellierung steht in engem Zusammenhang mit der für den Computereinsatz essentiellen Diskretisierung beziehungsweise Parametrisierung inverser Probleme, auf die besonderes Augenmerk gerichtet wird. Ein weiterer Schwerpunkt ist die praktische Lösung der aus der Diskretisierung resultierenden globalen, im Allgemeinen nichtlinearen Optimierungsprobleme. Hingegen wird auf die Besprechung einer abstrakten Theorie der Regularisierung verzichtet.

Um den ganzen Weg von der theoretischen Analyse bis zur effizienten numerischen Lösung inverser Probleme aufzeigen zu können, wird die Besprechung mathematischer Grundlagen gegenüber Standardtexten um die Einbeziehung von Themen der Wahrscheinlichkeitstheorie und Statistik, der Approximation mit Wavelets und dünnen Gittern sowie der globalen Optimierung wesentlich erweitert.

Für eine Reihe von repräsentativen Anwendungsfällen aus den Bereichen Mobilfunk, Medizintechnik oder Geophysik werden die jeweiligen, zumeist nichtlinearen Probleme mathematisch präzisiert, eingehend analysiert und rechnerisch gelöst.

Das Buch ist zum Selbststudium für Mathematiker und für mathematisch interessierte Ingenieure und Naturwissenschaftler geeignet.

Univ.-Prof. Dr. Mathias Richter, Studium Mathematik TU München 1985-1990, Promotion in Mathematik 1996 an der TU München bei Prof. Dr. C. Reinsch, 1996-2010 Research Scientist bei Siemens, seit 2010 Professor für Mathematik an der Universität der Bundeswehr München, Fakultät für Elektrotechnik und Informationstechnik.

Univ.-Prof. Dr. Dr. Stefan Schäffler, Studium Mathematik TU München 1981-1986, Promotion Mathematik 1988, Habilitation Mathematik 1995, Promotion Elektrotechnik und Informationstechnik 1997 (alles TU München), 1997-2000 Senior Principal Research Scientist bei der SIEMENS AG (1998-2000 in Teilzeit), 1998-2000 Professor für Angewandte Mathematik (C3) in Erlangen, seit Dez. 2000 Universität der Bundeswehr München, Fakultät für Elektrotechnik und Informationstechnik, Professur für Mathematik und Operations Research.
Erscheint lt. Verlag 30.11.2022
Zusatzinfo XVI, 289 S. 70 Abb., 30 Abb. in Farbe.
Sprache deutsch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Inverse Probleme • Lösung inverser Probleme • Optimierung • Stochastik • Stochastische Modellierung
ISBN-10 3-662-66343-0 / 3662663430
ISBN-13 978-3-662-66343-1 / 9783662663431
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich