Extremal Finite Set Theory - Daniel Gerbner, Balazs Patkos

Extremal Finite Set Theory

Buch | Softcover
352 Seiten
2023
Chapman & Hall/CRC (Verlag)
978-1-032-47600-1 (ISBN)
54,85 inkl. MwSt
Extremal Finite Set Theory surveys old and new results in this subject. It presents an overview of the main techniques and tools (shifting, cycle method, profile polytopes, incidence matrices, combinatorial nullstellensatz, etc.) used in the different subtopics.
Extremal Finite Set Theory surveys old and new results in the area of extremal set system theory. It presents an overview of the main techniques and tools (shifting, the cycle method, profile polytopes, incidence matrices, flag algebras, etc.) used in the different subtopics. The book focuses on the cardinality of a family of sets satisfying certain combinatorial properties. It covers recent progress in the subject of set systems and extremal combinatorics.



Intended for graduate students, instructors teaching extremal combinatorics and researchers, this book serves as a sound introduction to the theory of extremal set systems. In each of the topics covered, the text introduces the basic tools used in the literature. Every chapter provides detailed proofs of the most important results and some of the most recent ones, while the proofs of some other theorems are posted as exercises with hints.



Features:










Presents the most basic theorems on extremal set systems







Includes many proof techniques







Contains recent developments







The book’s contents are well suited to form the syllabus for an introductory course




About the Authors:



Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory.

Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.

Dániel Gerbner is a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences in Budapest, Hungary. He holds a Ph.D. from Eötvös Loránd University, Hungary and has contributed to numerous publications. His research interests are in extremal combinatorics and search theory. Balázs Patkós is also a researcher at the Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. He holds a Ph.D. from Central European University, Budapest and has authored several research papers. His research interests are in extremal and probabilistic combinatorics.

Basics



Sperner’s theorem, LYM-inequality, Bollobás inequality. The Erdős-Ko-Rado theorem - several proofs. Intersecting Sperner families. Isoperimetric inequalities: the Kruskal-Katona theorem and Harper’s theorem. Sunflowers.



Intersection theorems



Stability of the Erdős-Ko-Rado theorem. t-intersecting families. Above the Erdős-Ko-Rado threshold. L-intersecting families. r-wise intersecting families. k-uniform intersecting families with covering number k. The number of intersecting families. Cross-intersecting families.



Sperner-type theorems



More-part Sperner families. Supersaturation. The number of antichains in 2^{[n]} (Dedekind’s problem). Union-free families and related problems. Union-closed families.



Random versions of Sperner’s theorem and the Erdős-Ko-Rado theorem



The largest antichain in Qn (p). Largest intersecting families in Qn, k (p). Removing edges from K n (n, K). G-intersecting families. A random process generating intersecting families.



Turán-type problems



Complete forbidden hypergraphs and local sparsity. Graph-based forbidden hypergraphs. Hypergraph-based forbidden hypergraphs. Other forbidden hypergraphs. Some methods. Non-uniform Turán problems



Saturation problems



Saturated hypergraphs and weak saturation. Saturating k-Sperner families and related problems.



Forbidden subposet problems



Chain partitioning and other methods. General bounds on La(n, P) involving the height of P. Supersaturation. Induced forbidden subposet problems. Other variants of the problem. Counting other subposets.



Traces of sets



Characterizing the case of equality in the Sauer Lemma. The arrow relation. Forbidden subconfigurations. Uniform versions.



Combinatorial search theory



Basics. Searching with small query sets. Parity search. Searching with lies. Between adaptive and non-adaptive algorithms

Erscheinungsdatum
Reihe/Serie Discrete Mathematics and Its Applications
Sprache englisch
Maße 156 x 234 mm
Gewicht 540 g
Themenwelt Mathematik / Informatik Mathematik
ISBN-10 1-032-47600-1 / 1032476001
ISBN-13 978-1-032-47600-1 / 9781032476001
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
fundiert, vielseitig, praxisnah

von Friedhelm Padberg; Christiane Benz

Buch | Softcover (2021)
Springer Berlin (Verlag)
32,99
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
64,99