Discrete Encounters - Craig Bauer

Discrete Encounters

(Autor)

Buch | Softcover
732 Seiten
2023
Chapman & Hall/CRC (Verlag)
978-1-032-47448-9 (ISBN)
54,85 inkl. MwSt
This book offers a new, fresh approach to the Discrete Mathematics course. Combining traditional course topics with popular culture, applications from a varity of historical examples and a focus on the historical development of the material. The author's intent is to enterain as well as teach.
Eschewing the often standard dry and static writing style of traditional textbooks, Discrete Encounters provides a refreshing approach to discrete mathematics. The author blends traditional course topics and applications with historical context, pop culture references, and open problems. This book focuses on the historical development of the subject and provides fascinating details of the people behind the mathematics, along with their motivations, deepening readers’ appreciation of mathematics.



This unique book covers many of the same topics found in traditional textbooks, but does so in an alternative, entertaining style that better captures readers’ attention. In addition to standard discrete mathematics material, the author shows the interplay between the discrete and the continuous and includes high-interest topics such as fractals, chaos theory, cellular automata, money-saving financial mathematics, and much more. Not only will readers gain a greater understanding of mathematics and its culture, they will also be encouraged to further explore the subject. Long lists of references at the end of each chapter make this easy.



Highlights:










Features fascinating historical context to motivate readers







Text includes numerous pop culture references throughout to provide a more engaging reading experience







Its unique topic structure presents a fresh approach







The text’s narrative style is that of a popular book, not a dry textbook







Includes the work of many living mathematicians







Its multidisciplinary approach makes it ideal for liberal arts mathematics classes, leisure reading, or as a reference for professors looking to supplement traditional courses







Contains many open problems






Profusely illustrated

Craig P. Bauer is a professor of mathematics at York College of Pennsylvania. He’s the editor-in-chief of Cryptologia and was the 2011–2012 Scholar-in-Residence at the National Security Agency’s Center for Cryptologic History. He loves to carry out research, write, and lecture. His previous books are Secret History: The Story of Cryptology and Unsolved! The History and Mystery of the World’s Greatest Ciphers from Ancient Egypt to Online Secret Societies. With the present book he stays true to his style, blending mathematics and history. Craig earned his Ph.D. in mathematics from North Carolina State University and did his undergraduate work at Franklin & Marshall College.

Contents



Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix



Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi



Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii



0. Continuous vs. Discrete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1



1. Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21



2. Proof Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53



3. Practice with Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85



4. Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101



5. Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135



6. The Functional View of Mathematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159



7. The Multiplication Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177



8. Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197



9. Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219



10. Pascal and the Arithmetic Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243



11. Stirling and Bell Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277



12. The Basics of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301



13. The Fibonacci Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327



14. The Tower of Hanoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357



15. Population Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385



16. Financial Mathematics (and More) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405



17. More Difference Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .427



18. Chaos Theory and Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .453



19. Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .515



20. Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .571



21. Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .641



22. Relations, Partial Orderings, and Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .663



Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Cryptography and Network Security Series
Zusatzinfo 148 Illustrations, color; 270 Illustrations, black and white
Sprache englisch
Maße 178 x 254 mm
Gewicht 1520 g
Themenwelt Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 1-032-47448-3 / 1032474483
ISBN-13 978-1-032-47448-9 / 9781032474489
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Numbers and Counting, Groups, Graphs, Orders and Lattices

von Volker Diekert; Manfred Kufleitner; Gerhard Rosenberger …

Buch | Softcover (2023)
De Gruyter (Verlag)
64,95