Quadratic Programming with Computer Programs - Michael J. Best

Quadratic Programming with Computer Programs

(Autor)

Buch | Softcover
400 Seiten
2023
CRC Press (Verlag)
978-1-032-47694-0 (ISBN)
54,85 inkl. MwSt
Quadratic programming is a mathematical technique that allows for the optimization of a quadratic function in several variables. QP is a subset of Operations Research and is the next higher lever of sophistication than Linear Programming. It is a key mathematical tool in Portfolio Optimization and structural plasticity. This is useful in Civil Engineering as well as Statistics.

Michael J. Best is Professor Emeritus in the Department of Combinatorics and Optimization at the University of Waterloo. He is only the second person to receive a B.Math degree from the University of Waterloo and holds a PhD from UC-Berkeley. Michael is also the author of Portfolio Optimzation, published by CRC Press.

Geometrical Examples



Geometry of a QP: Examples



Geometrical Examples



Optimality Conditions



Geometry of Quadratic Functions



Nonconvex QP’s



Portfolio Opimization



The Efficient Frontier



The Capital Market Line



QP Subject to Linear Equality Constraints



QP Preliminaries



QP Unconstrained: Theory



QP Unconstrained: Algorithm 1



QP with Linear Equality Constraints: Theory



QP with Linear Equality Constraints: Alg. 2



Quadratic Programming



QP Optimality Conditions



QP Duality



Unique and Alternate Optimal Solutions



Sensitivity Analysis



QP Solution Algorithms



A Basic QP Algorithm: Algorithm 3



Determination of an Initial Feasible Point



An Efficient QP Algorithm: Algorithm 4



Degeneracy and Its Resolution



A Dual QP Algorithm



Algorithm 5



General QP and Parametric QP Algorithms



A General QP Algorithm: Algorithm 6



A General Parametric QP Algorithm: Algorithm 7



Symmetric Matrix Updates



Simplex Method for QP and PQP



Simplex Method for QP: Algorithm 8



Simplex Method for Parametric QP: Algorithm 9



Nonconvex Quadratic Programming



Optimality Conditions



Finding a Strong Local Minimum: Algorithm 10

Erscheinungsdatum
Reihe/Serie Advances in Applied Mathematics
Zusatzinfo 25 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 178 x 254 mm
Gewicht 675 g
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik Bauwesen
Technik Umwelttechnik / Biotechnologie
Wirtschaft Betriebswirtschaft / Management
ISBN-10 1-032-47694-X / 103247694X
ISBN-13 978-1-032-47694-0 / 9781032476940
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95