Ziel dieser Ausarbeitung ist demnach die Prognose von Aktienkursen von Unternehmen mit geringer Marktkapitalisierung, sogenannten Small Caps, aus der Region Deutschland, Österreich und der Schweiz mittels künstlicher neuronaler Netze. Geprüft werden soll, ob mittels Deep Learning Prognosen möglich sind, die eine hohe Genauigkeit aufweisen, um diese für Entscheidungen, etwa Investitionsentscheidungen, heranzuziehen. Zur Erfüllung der Zielsetzung werden die historischen Kurse der Small Caps herangezogen und im Rahmen mehrerer Versuchsreihen um verschiedene weitere Parameter ergänzt und variiert, um als Teilzielsetzung auch die Auswirkungen verschiedener Einflussfaktoren auf die Prognosegüte der zu erstellenden Prognosemodelle zu prüfen.
Zunächst werden relevante markttheoretische Grundlagen betrachtet sowie ein Überblick über den Stand wesentlicher Theorien und der Forschung gegeben. Im dritten Kapitel werden sowohl der Aufbau als auch die Funktionsweise von künstlichen Neuronen und deren Zusammenspiel in künstlichen neuronalen Netzen beleuchtet. Betrachtet werden neben verschiedenen Lernformen auch unterschiedliche Arten neuronaler Netze. Eine Abwägung der Netze, im Sinne der Zielsetzung dieser Arbeit, mündet in der Auswahl eines Netztyps. Im vierten Kapitel erfolgt die Definition der Begrifflichkeit Small Cap sowie der Auswahlprozess der zu prognostizierenden Aktien und Indikatoren. Eine Beschreibung der Vorgehensweise begleitet exemplarisch die Prognose eines Nebenwertes. Im sechsten Kapitel werden acht Versuchsreihen mit wechselnden Parametern durchgeführt, um eine möglichst genaue Prognose zu ermöglichen. Diese werden mit den real eingetretenen Kursen und mit anderen Prognosemöglichkeiten verglichen und Vergleichsmaßstäbe zur Bewertung herangezogen.
Erscheint lt. Verlag | 29.11.2022 |
---|---|
Verlagsort | München |
Sprache | deutsch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | Deep Learning Preisprognose Small Caps Aktien Nebenwerte LSTM Künstliche neuronale Netze Neuronen |
ISBN-10 | 3-346-76963-1 / 3346769631 |
ISBN-13 | 978-3-346-76963-3 / 9783346769633 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 3,9 MB
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich