Advances in Graph Neural Networks (eBook)

eBook Download: PDF
2022 | 1st ed. 2023
XIV, 198 Seiten
Springer International Publishing (Verlag)
978-3-031-16174-2 (ISBN)

Lese- und Medienproben

Advances in Graph Neural Networks - Chuan Shi, Xiao Wang, Cheng Yang
Systemvoraussetzungen
58,84 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides a comprehensive introduction to the foundations and frontiers of graph neural networks. In addition, the book introduces the basic concepts and definitions in graph representation learning and discusses the development of advanced graph representation learning methods with a focus on graph neural networks. The book providers researchers and practitioners with an understanding of the fundamental issues as well as a launch point for discussing the latest trends in the science. The authors emphasize several frontier aspects of graph neural networks and utilize graph data to describe pairwise relations for real-world data from many different domains, including social science, chemistry, and biology. Several frontiers of graph neural networks are introduced, which enable readers to acquire the needed techniques of advances in graph neural networks via theoretical models and real-world applications. 

Chuan Shi, PhD., is a Professor and Deputy Director of Beijing Key Lab of Intelligent Telecommunications Software and Multimedia at the Beijing University of Posts and Telecommunications.  He received his B.S. from Jilin University in 2001, his M.S. from Wuhan University in 2004, and his Ph.D. from the ICT of Chinese Academic of Sciences in 2007.  His research interests include data mining, machine learning, and evolutionary computing. He has published more than 100 papers in refereed journals and conferences.

Xiao Wang, Ph.D., is an Associate Professor in the School of Computer Science at the Beijing University of Posts and Telecommunications. He received his Ph.D. from the School of Computer Science and Technology at Tianjin University in 2016. He was a postdoctoral researcher in the Department of Computer Science and Technology at Tsinghua University.  His current research interests include data mining, social network analysis, and machine learning. He has published more than 70 papers in refereed journals and conferences.

Cheng Yang, Ph.D., is an Associate Professor at the Beijing University of Posts and Telecommunications. He received his B.E. and Ph.D. from Tsinghua University in 2014 and 2019, respectively. His research interests include natural language processing and network representation learning. He has published more than 20 top-level papers in international journals and conferences including ACM TOIS, EMNLP, IJCAI, and AAAI.

Erscheint lt. Verlag 16.11.2022
Reihe/Serie Synthesis Lectures on Data Mining and Knowledge Discovery
Synthesis Lectures on Data Mining and Knowledge Discovery
Zusatzinfo XIV, 198 p. 41 illus., 36 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Mathematik
Schlagworte Data Mining • Distilling Graph Neural Networks • Dynamic Graphs • graph neural networks • Graph Structure Learning • heterogeneous graphs • Homogeneous Graphs • Intelligent Telecommunications • Knowledge Discovery • machine learning
ISBN-10 3-031-16174-2 / 3031161742
ISBN-13 978-3-031-16174-2 / 9783031161742
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
37,43
Das umfassende Handbuch

von Jürgen Sieben

eBook Download (2023)
Rheinwerk Computing (Verlag)
67,43