Community detection and mining in social media (eBook)

, (Autoren)

eBook Download: PDF
2022
XIV, 123 Seiten
Springer International Publishing (Verlag)
978-3-031-01900-5 (ISBN)

Lese- und Medienproben

Community detection and mining in social media - Lei Tang, Huan Liu
Systemvoraussetzungen
28,88 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The past decade has witnessed the emergence of participatory Web and social media, bringing people together in many creative ways. Millions of users are playing, tagging, working, and socializing online, demonstrating new forms of collaboration, communication, and intelligence that were hardly imaginable just a short time ago. Social media also helps reshape business models, sway opinions and emotions, and opens up numerous possibilities to study human interaction and collective behavior in an unparalleled scale. This lecture, from a data mining perspective, introduces characteristics of social media, reviews representative tasks of computing with social media, and illustrates associated challenges. It introduces basic concepts, presents state-of-the-art algorithms with easy-to-understand examples, and recommends effective evaluation methods. In particular, we discuss graph-based community detection techniques and many important extensions that handle dynamic, heterogeneous networks in social media. We also demonstrate how discovered patterns of communities can be used for social media mining. The concepts, algorithms, and methods presented in this lecture can help harness the power of social media and support building socially-intelligent systems. This book is an accessible introduction to the study of /emph{community detection and mining in social media}. It is an essential reading for students, researchers, and practitioners in disciplines and applications where social media is a key source of data that piques our curiosity to understand, manage, innovate, and excel. This book is supported by additional materials, including lecture slides, the complete set of figures, key references, some toy data sets used in the book, and the source code of representative algorithms. The readers are encouraged to visit the book website for the latest information. Table of Contents: Social Media and Social Computing / Nodes, Ties, and Influence / Community Detection and Evaluation / Communities in Heterogeneous Networks / Social Media Mining

Lei Tang is a scientist at Yahoo! Labs. He received his Ph.D. in computer science and engineering at Arizona State University in 2010 and BS from Fudan University, China in 2004. His research interests include social computing, data mining, and social media mining, in particular, relational learning with heterogeneous networks, group evolution, profiling and influence modeling, and collective behavior modeling and prediction in social media. He was awarded ASU GPSA Research Grant, SDM Doctoral Student Forum Fellowship, Student Travel Awards and Scholarships in various conferences. He is a member of ACM and IEEE. Lei Tang is a scientist at Yahoo! Labs. He received his Ph.D. in computer science and engineering at Arizona State University in 2010 and BS from Fudan University, China in 2004. His research interests include social computing, data mining, and social media mining, in particular, relational learning with heterogeneous networks, group evolution, profiling and influence modeling, and collective behavior modeling and prediction in social media. He was awarded ASU GPSA Research Grant, SDM Doctoral Student Forum Fellowship, Student Travel Awards and Scholarships in various conferences. He is a member of ACM and IEEE.
Erscheint lt. Verlag 1.6.2022
Reihe/Serie Synthesis Lectures on Data Mining and Knowledge Discovery
Synthesis Lectures on Data Mining and Knowledge Discovery
Zusatzinfo X, 96 p.
Sprache englisch
Original-Titel Community Detection and Mining in Social Media
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
ISBN-10 3-031-01900-8 / 3031019008
ISBN-13 978-3-031-01900-5 / 9783031019005
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich