Proofs that Really Count
The Art of Combinatorial Proof
Seiten
2003
American Mathematical Society (Verlag)
978-1-4704-7259-7 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-7259-7 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.
Erscheinungsdatum | 31.10.2022 |
---|---|
Reihe/Serie | Dolciani Mathematical Expositions |
Verlagsort | Providence |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Graphentheorie |
ISBN-10 | 1-4704-7259-7 / 1470472597 |
ISBN-13 | 978-1-4704-7259-7 / 9781470472597 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Numbers and Counting, Groups, Graphs, Orders and Lattices
Buch | Softcover (2023)
De Gruyter (Verlag)
64,95 €