Toward Robots That Reason: Logic, Probability & Causal Laws
Springer International Publishing (Verlag)
978-3-031-21002-0 (ISBN)
Vaishak Belle, Ph.D., is a Chancellor’s Fellow and Reader at The University of Edinburgh School of Informatics. He is also an Alan Turing Institute Faculty Fellow, a Royal Society University Research Fellow, and a member of the Royal Society of Edinburgh’s Young Academy of Scotland. Dr. Belle directs a research lab on artificial intelligence at The University of Edinburgh, specializing in the unification of symbolic logic and machine learning. He has co-authored over 50 scientific articles on AI, and has won several best paper awards.
Preface.- Acknowledgments.- Introduction.- Representation Matters.- From Predicate Calculus to the Situation Calculus.- Knowledge.- Probabilistic Beliefs.- Continuous Distributions.- Localization.- Regression & Progression.- Programs.- A Modal Reconstruction.- Conclusions.
Erscheinungsdatum | 25.02.2023 |
---|---|
Reihe/Serie | Synthesis Lectures on Artificial Intelligence and Machine Learning |
Zusatzinfo | XIII, 190 p. 27 illus., 14 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 168 x 240 mm |
Gewicht | 511 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | agent programming • Cognitive Robotics • Knowledge Representation and Reasoning • Logic Meets Probability • Probabilistic Knowledge • Probabilistic Logical Languages • Progression Programming • Regression Programming • Situation Calculus |
ISBN-10 | 3-031-21002-6 / 3031210026 |
ISBN-13 | 978-3-031-21002-0 / 9783031210020 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich