Practical Automated Machine Learning Using H2O.ai. - Salil Ajgaonkar

Practical Automated Machine Learning Using H2O.ai. (eBook)

Discover the power of automated machine learning, from experimentation through to deployment to production

(Autor)

eBook Download: EPUB
2022
396 Seiten
Packt Publishing (Verlag)
978-1-80107-635-7 (ISBN)
Systemvoraussetzungen
29,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

With the huge amount of data being generated over the internet and the benefits that Machine Learning (ML) predictions bring to businesses, ML implementation has become a low-hanging fruit that everyone is striving for. The complex mathematics behind it, however, can be discouraging for a lot of users. This is where H2O comes in - it automates various repetitive steps, and this encapsulation helps developers focus on results rather than handling complexities.

You'll begin by understanding how H2O's AutoML simplifies the implementation of ML by providing a simple, easy-to-use interface to train and use ML models. Next, you'll see how AutoML automates the entire process of training multiple models, optimizing their hyperparameters, as well as explaining their performance. As you advance, you'll find out how to leverage a Plain Old Java Object (POJO) and Model Object, Optimized (MOJO) to deploy your models to production. Throughout this book, you'll take a hands-on approach to implementation using H2O that'll enable you to set up your ML systems in no time.

By the end of this H2O book, you'll be able to train and use your ML models using H2O AutoML, right from experimentation all the way to production without a single need to understand complex statistics or data science.


Accelerate the adoption of machine learning by automating away the complex parts of the ML pipeline using H2O.aiKey FeaturesLearn how to train the best models with a single click using H2O AutoMLGet a simple explanation of model performance using H2O ExplainabilityEasily deploy your trained models to production using H2O MOJO and POJOBook DescriptionWith the huge amount of data being generated over the internet and the benefits that Machine Learning (ML) predictions bring to businesses, ML implementation has become a low-hanging fruit that everyone is striving for. The complex mathematics behind it, however, can be discouraging for a lot of users. This is where H2O comes in - it automates various repetitive steps, and this encapsulation helps developers focus on results rather than handling complexities. You'll begin by understanding how H2O's AutoML simplifies the implementation of ML by providing a simple, easy-to-use interface to train and use ML models. Next, you'll see how AutoML automates the entire process of training multiple models, optimizing their hyperparameters, as well as explaining their performance. As you advance, you'll find out how to leverage a Plain Old Java Object (POJO) and Model Object, Optimized (MOJO) to deploy your models to production. Throughout this book, you'll take a hands-on approach to implementation using H2O that'll enable you to set up your ML systems in no time. By the end of this H2O book, you'll be able to train and use your ML models using H2O AutoML, right from experimentation all the way to production without a single need to understand complex statistics or data science.What you will learnGet to grips with H2O AutoML and learn how to use itExplore the H2O Flow Web UIUnderstand how H2O AutoML trains the best models and automates hyperparameter optimizationFind out how H2O Explainability helps understand model performanceExplore H2O integration with scikit-learn, the Spring Framework, and Apache StormDiscover how to use H2O with Spark using H2O Sparkling WaterWho this book is forThis book is for engineers and data scientists who want to quickly adopt machine learning into their products without worrying about the internal intricacies of training ML models. If you're someone who wants to incorporate machine learning into your software system but don't know where to start or don't have much expertise in the domain of ML, then you'll find this book useful. Basic knowledge of statistics and programming is beneficial. Some understanding of ML and Python will be helpful.
Erscheint lt. Verlag 26.9.2022
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80107-635-9 / 1801076359
ISBN-13 978-1-80107-635-7 / 9781801076357
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43