Mathematical Methods in Image Processing and Inverse Problems -

Mathematical Methods in Image Processing and Inverse Problems

IPIP 2018, Beijing, China, April 21–24
Buch | Softcover
223 Seiten
2022 | 1st ed. 2021
Springer Verlag, Singapore
978-981-16-2703-3 (ISBN)
192,59 inkl. MwSt
This book contains eleven original and survey scientific research articles arose from presentations given by invited speakers at International Workshop on Image Processing and Inverse Problems, held in Beijing Computational Science Research Center, Beijing, China, April 21–24, 2018. The book was dedicated to Professor Raymond Chan on the occasion of his 60th birthday.
The contents of the book cover topics including image reconstruction, image segmentation, image registration, inverse problems and so on. Deep learning, PDE, statistical theory based research methods and techniques were discussed. The state-of-the-art developments on mathematical analysis, advanced modeling, efficient algorithm and applications were presented. The collected papers in this book also give new research trends in deep learning and optimization for imaging science. It should be a good reference for researchers working on related problems, as well as for researchers working on computer vision and visualization, inverse problems, image processing and medical imaging.

C. Wang, R. Chan, R. Plemmons, Sudhakar Prasad,Point Spread Function Engineering for 3D Imaging of Space Debris using a Continuous Exact $/ell_0$ Penalty (CEL0) Based Algorithm/.- S. Wei, S. Leung, An Adjoint State Method for a Schr/"odinger Inverse Problem.- Ke Chen, On A New Diffeomorphic Multi-modality Image Registration Model and Its Convergent Gauss-Newton Solver.- Y. He, M. Huska, S. Ha Kang, H. Liu, Fast Algorithms for Surface Reconstruction from Point Cloud.- H. Pan, Y. Wen, A Total Variation Regularization Method for Inverse Source Problem with Uniform Noise.- S. Morigi, A. Lanza, F. Sgallari, Automatic Parameter Selection Based on Residual Whiteness for Convex non-convex Variational Restoration.- Michael Ng, M. Qiao, Total Variation Gamma Correction Method for Tone Mapped HDR Images.- X. Yuan, On the Optimal Proximal Parameter of an ADMM-like Splitting Method for Separable Convex Programming.- X. Ding, H. Yang, R. Chan, Hui Hu, Y. Peng, T. Zeng, A newinitialization method for neural networks with weight sharing.- S.-Nee Chow, Jun Lu, H. Zhou, The Shortest path amid 3-D polyhedral obstacles.- Y. Chen, J. Wan, Multigrid Methods for Image Registration Model based on Optimal Mass Transport.

Erscheinungsdatum
Reihe/Serie Springer Proceedings in Mathematics & Statistics ; 360
Zusatzinfo 63 Illustrations, color; 9 Illustrations, black and white; X, 223 p. 72 illus., 63 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Schlagworte compressive sensing • Convolutional Linear Networks • Defocus • emission tomography • Gravimetry • Image Selective Segmentation Models • Lattice-based Patterned Fabric Inspection • Low-Rank Matrix Reconstruction • LpCM • Non-Convex Methods • Robust Tensor Completion • Traveltime Tomography • Variational Inpainting Models • Variational Shape Decomposition
ISBN-10 981-16-2703-7 / 9811627037
ISBN-13 978-981-16-2703-3 / 9789811627033
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95