Optimization Algorithms for Distributed Machine Learning - Gauri Joshi

Optimization Algorithms for Distributed Machine Learning

(Autor)

Buch | Hardcover
XIII, 127 Seiten
2022 | 1st ed. 2023
Springer International Publishing (Verlag)
978-3-031-19066-7 (ISBN)
42,79 inkl. MwSt
This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.

Gauri Joshi, Ph.D., is an associate professor in the ECE department at Carnegie Mellon University. Dr. Joshi completed her Ph.D. from MIT EECS. Her current research is on designing algorithms for federated learning, distributed optimization, and parallel computing. Her awards and honors include being named as one of MIT Technology Review's 35 Innovators under 35 (2022), the NSF CAREER Award (2021), the ACM SIGMETRICS Best Paper Award (2020), Best Thesis Prize in Computer science at MIT (2012), and Institute Gold Medal of IIT Bombay (2010).

Distributed Optimization in Machine Learning.- Calculus, Probability and Order Statistics Review.- Convergence of SGD and Variance-Reduced Variants.- Synchronous SGD and Straggler-Resilient Variants.- Asynchronous SGD and Staleness-Reduced Variants.- Local-update and Overlap SGD.- Quantized and Sparsified Distributed SGD.-Decentralized SGD and its Variants.

Erscheinungsdatum
Reihe/Serie Synthesis Lectures on Learning, Networks, and Algorithms
Zusatzinfo XIII, 127 p. 40 illus., 38 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 168 x 240 mm
Gewicht 380 g
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Distributed Machine Learning • Distributed Optimization • Distributed SGD • federated learning • Large-scale Machine Learning • optimization algorithms • Stochastic Gradient descent
ISBN-10 3-031-19066-1 / 3031190661
ISBN-13 978-3-031-19066-7 / 9783031190667
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99