Integral Transforms and Applications (eBook)

eBook Download: EPUB
2022
282 Seiten
De Gruyter (Verlag)
978-3-11-079292-8 (ISBN)

Lese- und Medienproben

Integral Transforms and Applications - Nita H. Shah, Monika K. Naik
Systemvoraussetzungen
159,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This work presents the guiding principles of Integral Transforms needed for many applications when solving engineering and science problems. As a modern approach to Laplace Transform, Fourier series and Z-Transforms it is a valuable reference for professionals and students alike.



Prof. Dr. Nita H. Shah, Department of Mathematics, School of Sciences, Gujarat University, Ahmedabad, Gujarat-380009, India.

1 Laplace transforms


1.1 Introduction


The Laplace transform, named after its inventor Pierre-Simon Laplace, is an integral transform. Laplace transform converts a function of a real variable (often time) to a function of a complex variable (complex frequency).

Laplace transforms are useful to solve linear ordinary differential equations and analyze frequency response and stability analysis. Process control feedback loops and their response properties and stability can thus be conveniently analyzed in the Laplace domain.

Also, depending on the boundary conditions of your problem, it can be judicious to use a Laplace transform to solve the diffusion equation, heat transfer equation, and Navier–Stokes. So, Laplace transforms will show up in many core engineering curricula, for example, mass transport, heat transport, fluid transport, and process controls. For the basic concepts of Laplace transform and its applications, one can refer to [26, 8, 9, 13, 14].

1.2 Definition of Laplace transforms


As we have explained in Introduction, the integral transform of function ft in the interval a≤x≤b is given by,

(1.1)ℓft=∫abKt,sftdt=∘ˆs,

where −∞≤a<b≤∞

Let ft be a function defined for t≥0 0≤t≤∞ and kernel Kt,s=e−st and then eq. (1.1) will be called Laplace transform under certain conditions to be explained later.

Thus, the Laplace transform of function ft which is defined for t≥0 (is real variable), is formally defined as follows:

Lft=∫0∞e−stftdt=Fs, Res>0

where s is the transform variable, which is a complex number.

Figure 1.1: The Laplace transforms as a mapping.

Therefore, the Laplace transform converts time domain functions and operations into frequency domain ft→Fs t∈R, s∈CasshowninFigure1.1.

1.3 Laplace transform of some elementary functions using definition


Example 1.1


Find the Laplace transform ft=1 for t≥0.

Solution


We know that Lft=∫0∞e−stftdt

Here, ft=1:

∴ Lft=1=∫0∞e−st1dt
⇒L1= e−st−st=0t=∞
⇒L1=1−slimt→∞e−st−1

⇒L1=1−s0−1=1s=Fs Thus, L1=1s, s>0.

Example 1.2


Find the Laplace transform of f(t)=eat for t≥0, where “a” is a constant.

Solution


We know that Lft=∫0∞e−stftdt

Here f(t)=eat

∴Lft=eat=∫0∞e−steatdt
⇒ Leat= ∫0∞e−s−at dt
⇒ Leat= e−s−at−s−at=0t=∞
⇒Leat=1−s−alimt→∞e−s−at−1
⇒Leat=1−s−a0−1=1s−a=Fs

Thus, Leat=1s−a, s>a.

Note: Similarly, Le−at=1s+a, s>−a.

Example 1.3


Find the Laplace transform of ft=sinat, where “a” is a real constant.

Solution


We know that

sinat=eiat−e−iat2i

Now, ft=sinat and Lft= ∫0∞e−stft dt

∴Lft=sinat=∫0∞e−stsinatdt
⇒ Lsinat= ∫0∞e−st eiat−e−iat2i dt
=12i∫0∞e−steiat−e−ste−iatdt=12i∫0∞e−s−iat−e−s+iatdt=12ie−s−iat−s−ia+e−s+iats+iat=0t=∞=12i1s−ia−1s+ia=12is+ia−s+ias−ias+ia=as2−ia2∵i2=−1=as2+a2

Thus, Lsinat=as2+a2.

Example 1.4


Find the Laplace transform of ft=cosat, where “a” is a real constant.

Solution


We know that

cosat=eiat+e−iat2

Now, ft=cosat and Lft=∫0∞e−stft dt ,

∴Lft=cosat=∫0∞e−stcosatdt
Lft=cosat=∫0∞e−stcosatdt⇒Lcosat=∫0∞e−steiat+e−iat2dt=12∫0∞e−steiat+e−ste−iatdt=12∫0∞e−s−iat+e−s+iatdt=12e−s−iat−s−ia−e−s+iats+iat=0t=∞=121s−ia+1s+ia=12s−ia+s+ias−ias+ia=ss2−ia2i2=−1=ss2+a2

Thus, Lcosat=ss2+a2.

1.3.1 Linearity of Laplace transforms


Functions f1t and f2t have Laplace transforms F1s and F2s, respectively.

Also, if c1 and c2 are any constants, then,

Lc1f1t+c2f2t=c1L[f1t+c2Lf2t]=c1F1s+c2F2s

Proof. We know that

{Lft= ∫0∞e−stft dt=Fs
∴Lf1t=∫0∞e−stf1tdt=F1s
Lf2t= ∫0∞e−stf2t) dt=F2s

Now,

Lc1f1t+c2f2t=∫0∞e−stc1f1t+c2f2tdt=∫0∞e−stc1f1t+e−stc2f2tdt=∫0∞e−stc1f1t+e−stc2f2tdt=c1∫0∞e−stf1tdt+c2∫0∞e−stf2tdt=c1L[f1t+c2Lf2t]=c1F1s+c2F2s

Example 1.5

Find the Laplace transform of ft=sinhat, where “a” is a real constant.

Solution

We know that

sinhat=eat−e−at2

Now,

Lsinhat= Leat−e−at2=12Leat−Le−at=12 1s−a−1s+a=12 s+a−s+as−as+a= as2−a2

(by linearity property)

Thus, Lsinhat=as2−a2

Example 1.6

Find the Laplace transform of ft=coshat, where “a” is a real constant.

Solution

We know that

coshat=eat+e−at2

Now,

Lcoshat= Leat+e−at2
=12Leat+Le−at =12 1s−a+1s+a=12 s+a+s−as−as+a=ss2−a2

(by linearity property)

Thus, Lcoshat=ss2−a2.

Note

  1. The gamma function is defined by the improper integral ∫0∞e−xxn−1 dx=|n‾ for n>0

  2. If n is a positive integer, then |n+1‾=n!

  3. |n+1‾=n|n‾

  4. ...

Erscheint lt. Verlag 3.10.2022
Reihe/Serie De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences
De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences
ISSN
ISSN
Zusatzinfo 18 b/w and 11 col. ill., 7 b/w tbl.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte Anwendungen Integrale Transformation • Applications of Integral Transform • Fourier transform • Fourier Transformation • integrale Transformation • integral transform • Laplace-Transform • Laplace-Transformation • Z-Transform • Z-Transformation
ISBN-10 3-11-079292-3 / 3110792923
ISBN-13 978-3-11-079292-8 / 9783110792928
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 18,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
16,99
Grundlagen - Methoden - Anwendungen

von André Krischke; Helge Röpcke

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
34,99