Deep Convolutional Neural Network for The Prognosis of Diabetic Retinopathy - A. Shanthini, Gunasekaran Manogaran, G. Vadivu

Deep Convolutional Neural Network for The Prognosis of Diabetic Retinopathy (eBook)

eBook Download: PDF
2022 | 2023
IX, 75 Seiten
Springer Nature Singapore (Verlag)
978-981-19-3877-1 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book discusses a detailed overview of diabetic retinopathy, symptoms, causes, and screening methodologies. Using a deep convolution neural network and visualizations techniques, this work develops a prognosis system used to automatically detect the diabetic retinopathy disease from captured retina images and help improve the prediction rate of diagnosis. This book gives the readers an understanding of the diabetic retinopathy disease and recognition process that helps to improve the clinical analysis efficiency. It caters to general ophthalmologists and optometrists, diabetologists, and internists who encounter diabetic patients and most prevalent retinal diseases daily.



Dr. A. Shanthini is currently working as Associate Professor in the Department of Data science and Business systems, SRM Institute of Science and Technology, Kattankulathur Campus, India. She received her Bachelor of Engineering, Master of Engineering and Ph.D. from Annamalai University, India. Her current research interests include Data analyticssh, machine learning, and deep learning in health care. She published two patents in the Patent Of?ce Journal and one in Australian patent in the year 2018 and 2020, respectively. Currently, she is Principal Investigator of the project titled 'Prognosis of Microaneurysm, and early diagnosis system for non-proliferative Diabetic Retinopathy using Deep Convolutional neural network' sponsored by SPARC-IITK, MHRD, Government of India, which is associated with University of California, Davis Campus, USA, and SRM IST, India, for 67 Lakhs in March 2019. She is author/co-author in 12 research articles in international journals and conferences, including SCI and Scopus indexed papers. She is Active Member of IEEE, ACM, and ISC.

 

Dr. Gunasekaran Manogaran is currently working as Big Data Scientist at University of California, Davis, USA. He is also Adjunct Assistant Professor, Department of Computer Science and Information Engineering, Asia University, Taiwan, and Adjunct Faculty, in School of Computing, SRM Institute of Science and Technology, Kattankulathur, India. He is Visiting Researcher/Scientist at the University of La Frontera, Colombia, and the International University of La Rioja, Spain. He received his Ph.D. from the Vellore Institute of Technology University, India. He received his Bachelor of Engineering and Master of Technology from Anna University, India, and Vellore Institute of Technology University, India, respectively. He is author/co-author of more than 100 papers in conferences, book chapters, and journals, including IEEE Transactions on Industrial InformaticsIEEE Transactions on Computational Social SystemsIEEE Internet of ThingsIEEE Intelligent SystemIEEE AccessACM Transactions on Multimedia Computing, Communications, and Applications.

 

 

Dr. G. Vadivu is working in the teaching profession for more than two decades. Currently, she is designated Professor and Program Coordinator in the Department of Data Science and Business Systems at SRM Institute of Science and Technology, Kattankulathur Campus, India. Her research areas include big data analytics, semantic web, data mining, and database systems. She published more than 30 research articles in a reputed journal listed in SCIE and Scopus. She has organized UGC sponsored workshop on .NET Technologies during 2006 and 2009. She received the Best Teaching Faculty Award and Certi?cate of Appreciation for the journal published in the year 2012. Also, she has completed Oracle Certi?cation, Certi?cation in Database Administration-Microsoft Technology Association, High-Impact Teaching Skills Certi?ed by Dale Carnegie, and IBM-DB2 certi?cation.


This book discusses a detailed overview of diabetic retinopathy, symptoms, causes, and screening methodologies. Using a deep convolution neural network and visualizations techniques, this work develops a prognosis system used to automatically detect the diabetic retinopathy disease from captured retina images and help improve the prediction rate of diagnosis. This book gives the readers an understanding of the diabetic retinopathy disease and recognition process that helps to improve the clinical analysis efficiency. It caters to general ophthalmologists and optometrists, diabetologists, and internists who encounter diabetic patients and most prevalent retinal diseases daily.
Erscheint lt. Verlag 23.8.2022
Reihe/Serie Series in BioEngineering
Series in BioEngineering
Zusatzinfo IX, 75 p. 41 illus., 29 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizin / Pharmazie Medizinische Fachgebiete Augenheilkunde
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Medizintechnik
Schlagworte Deep learning • Diabetic Retinopathy (DR) • face recognition • Fully Convolutional Neural Network • Fundus Fluorescein Angiography • neural network • Non Proliferative Diabetic Retinopathy (NDPR) • Optical Coherence Tomography (OCT) • Prognosis System • semantic segmentation
ISBN-10 981-19-3877-6 / 9811938776
ISBN-13 978-981-19-3877-1 / 9789811938771
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
18,68