Simulation with Python - Rongpeng Li, Aiichiro Nakano

Simulation with Python (eBook)

Develop Simulation and Modeling in Natural Sciences, Engineering, and Social Sciences
eBook Download: PDF
2022 | 1st ed.
XV, 166 Seiten
Apress (Verlag)
978-1-4842-8185-7 (ISBN)
Systemvoraussetzungen
56,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Understand the theory and implementation of simulation. This book covers simulation topics from a scenario-driven approach using Python and rich visualizations and tabulations. 

The book discusses simulation used in the natural and social sciences and with simulations taken from the top algorithms used in the industry today. The authors use an engaging approach that mixes mathematics and programming experiments with beginning-intermediate level Python code to create an immersive learning experience that is cohesive and integrated. 

After reading this book, you will have an understanding of simulation used in natural sciences, engineering, and social sciences using Python.


What You'll Learn
  • Use Python and numerical computation to demonstrate the power of simulation
  • Choose a paradigm to run a simulation
  • Draw statistical insights from numerical experiments
  • Know how simulation is used to solve real-world problems 

Who This Book Is For

Entry-level to mid-level Python developers from various backgrounds, including backend developers, academic research programmers, data scientists, and machine learning engineers. The book is also useful to high school students and college undergraduates and graduates with STEM backgrounds.



Ron Li is a long-term and enthusiastic educator. He has been a researcher, data science instructor, and business intelligence engineer. Ron published a highly rated (4.5-star rating out of 5 on amazon) book titled Essential Statistics for Non-STEM Data Analysts. He has also authored/co-authored academic papers, taught (pro bono) data science to non-STEM professionals, and gives talks at conferences such as PyData. 

Aiichiro Nakano is a Professor of Computer Science with joint appointments in Physics & Astronomy, Chemical Engineering & Materials Science, Biological Sciences, and at the Collaboratory for Advanced Computing and Simulations at the University of Southern California. He received a PhD in physics from the University of Tokyo, Japan, in 1989. He has authored more than 360 refereed articles in the areas of scalable scientific algorithms, massive data visualization and analysis, and computational materials science.



Understand the theory and implementation of simulation. This book covers simulation topics from a scenario-driven approach using Python and rich visualizations and tabulations. The book discusses simulation used in the natural and social sciences and with simulations taken from the top algorithms used in the industry today. The authors use an engaging approach that mixes mathematics and programming experiments with beginning-intermediate level Python code to create an immersive learning experience that is cohesive and integrated. After reading this book, you will have an understanding of simulation used in natural sciences, engineering, and social sciences using Python.What You'll LearnUse Python and numerical computation to demonstrate the power of simulationChoose a paradigm to run a simulationDraw statistical insights from numerical experimentsKnow how simulation is used to solve real-world problems Who This Book Is ForEntry-level to mid-level Python developers from various backgrounds, including backend developers, academic research programmers, data scientists, and machine learning engineers. The book is also useful to high school students and college undergraduates and graduates with STEM backgrounds.
Erscheint lt. Verlag 23.8.2022
Zusatzinfo XV, 166 p. 90 illus., 80 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Programmiersprachen / -werkzeuge Python
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte computer simulation • Markov Chain • MonteCarlo Simulation • Network Theory • Numerical calculation • numerical simulation • Object Oriented Programming • Python • Scientific Computation
ISBN-10 1-4842-8185-3 / 1484281853
ISBN-13 978-1-4842-8185-7 / 9781484281857
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
ein kompakter Einstieg für die Praxis

von Ralph Steyer

eBook Download (2024)
Springer Vieweg (Verlag)
34,99
Arbeiten mit NumPy, Matplotlib und Pandas

von Bernd Klein

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99