Phenomenology, Logic, and the Philosophy of Mathematics - Richard Tieszen

Phenomenology, Logic, and the Philosophy of Mathematics

(Autor)

Buch | Hardcover
368 Seiten
2005
Cambridge University Press (Verlag)
978-0-521-83782-8 (ISBN)
129,95 inkl. MwSt
Phenomenology, Logic, and the Philosophy of Mathematics, first published in 2005, is about logic, mathematical knowledge and mathematical objects. It is concerned with the role of reason and intuition in the exact sciences and it analyzes many of the central positions in the philosophy of logic and philosophy of mathematics: platonism, nominalism, intuitionism, formalism, pragmatism, and others.
Offering a collection of fifteen essays that deal with issues at the intersection of phenomenology, logic, and the philosophy of mathematics, this 2005 book is divided into three parts. Part I contains a general essay on Husserl's conception of science and logic, an essay of mathematics and transcendental phenomenology, and an essay on phenomenology and modern pure geometry. Part II is focused on Kurt Godel's interest in phenomenology. It explores Godel's ideas and also some work of Quine, Penelope Maddy and Roger Penrose. Part III deals with elementary, constructive areas of mathematics. These are areas of mathematics that are closer to their origins in simple cognitive activities and in everyday experience. This part of the book contains essays on intuitionism, Hermann Weyl, the notion of constructive proof, Poincaré and Frege.

Part I. Reason, Science, and Mathematics: 1. Science as a triumph of the human spirit and science in crisis: Husserl and the Fortunes of Reason; 2. Mathematics and transcendental phenomenology; Part II. Kurt Godel, Phenomenology and the Philosophy of Mathematics: 3. Kurt Godel and phenomenology; 4. Godel's philosophical remarks on mathematics and logic; 5. Godel's path from the incompleteness theorems (1931) to Phenomenology (1961); 6. Godel and the intuition of concepts; 7. Godel and Quine on meaning and mathematics; 8. Maddy on realism in mathematics; 9. Penrose and the view that minds are not machines; Part III. Constructivism, Fulfilled Intentions, and Origins: 10. Intuitionism, meaning theory and cognition; 11. The philosophical background of Weyl's mathematical constructivism; 12. What is a proof?; 13. Phenomenology and mathematical knowledge; 14. Logicism, impredicativity, formalism; 15. The philosophy of arithmetic: Frege and Husserl.

Erscheint lt. Verlag 6.6.2005
Verlagsort Cambridge
Sprache englisch
Maße 152 x 229 mm
Gewicht 710 g
Themenwelt Mathematik / Informatik Mathematik
ISBN-10 0-521-83782-0 / 0521837820
ISBN-13 978-0-521-83782-8 / 9780521837828
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
64,99