Resource-Efficient Medical Image Analysis
Springer International Publishing (Verlag)
978-3-031-16875-8 (ISBN)
This book constitutes the refereed proceedings of the first MICCAI Workshop on Resource-Efficient Medical Image Analysis, REMIA 2022, held in conjunction with MICCAI 2022, in September 2022 as a hybrid event.
REMIA 2022 accepted 13 papers from the 19 submissions received. The workshop aims at creating a discussion on the issues for practical applications of medical imaging systems with data, label and hardware limitations.
Multi-Task Semi-Supervised Learning for Vascular Network.- Segmentation and Renal Cell Carcinoma Classification.- Self-supervised Antigen Detection Artificial Intelligence (SANDI).- RadTex: Learning Effcient Radiograph Representations from Text Reports.- Single Domain Generalization via Spontaneous Amplitude Spectrum Diversification.- Triple-View Feature Learning for Medical Image Segmentation.- Classification of 4D fMRI Images Using ML, Focusing on Computational and Memory Utilization Effciency.- An Effcient Defending Mechanism Against Image Attacking On Medical Image Segmentation Models.- Leverage Supervised and Self-supervised Pretrain Models for Pathological Survival Analysis via a Simple and Low-cost Joint Representation Tuning.- Pathological Image Contrastive Self-Supervised Learning.- Investigation of Training Multiple Instance Learning Networks with Instance Sampling.- Masked Video Modeling with Correlation-aware Contrastive Learning for Breast Cancer Diagnosis in Ultrasound.- A self-attentive meta-learning approach for image-based few-shot disease detection.- Facing Annotation Redundancy: OCT Layer Segmentation with Only 10 Annotated Pixels Per Layer.
Erscheinungsdatum | 13.09.2022 |
---|---|
Reihe/Serie | Lecture Notes in Computer Science |
Zusatzinfo | X, 137 p. 42 illus., 39 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 237 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Schlagworte | Applications • Artificial Intelligence • Bioinformatics • Classification methods • Computer Networks • Computer Science • Computer systems • computer vision • conference proceedings • Deep learning • Image Analysis • Image Processing • Image Quality • image reconstruction • Image Segmentation • Imaging Systems • Informatics • machine learning • Neural networks • pattern recognition • Research |
ISBN-10 | 3-031-16875-5 / 3031168755 |
ISBN-13 | 978-3-031-16875-8 / 9783031168758 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich