Comet for Data Science - Angelica Lo Duca

Comet for Data Science (eBook)

Enhance your ability to manage and optimize the life cycle of your data science project
eBook Download: EPUB
2022
402 Seiten
Packt Publishing (Verlag)
978-1-80181-435-5 (ISBN)
Systemvoraussetzungen
33,59 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides concepts and practical use cases which can be used to quickly build, monitor, and optimize data science projects. Using Comet, you will learn how to manage almost every step of the data science process from data collection through to creating, deploying, and monitoring a machine learning model.
The book starts by explaining the features of Comet, along with exploratory data analysis and model evaluation in Comet. You'll see how Comet gives you the freedom to choose from a selection of programming languages, depending on which is best suited to your needs. Next, you will focus on workspaces, projects, experiments, and models. You will also learn how to build a narrative from your data, using the features provided by Comet. Later, you will review the basic concepts behind DevOps and how to extend the GitLab DevOps platform with Comet, further enhancing your ability to deploy your data science projects. Finally, you will cover various use cases of Comet in machine learning, NLP, deep learning, and time series analysis, gaining hands-on experience with some of the most interesting and valuable data science techniques available.
By the end of this book, you will be able to confidently build data science pipelines according to bespoke specifications and manage them through Comet.


Gain the key knowledge and skills required to manage data science projects using CometKey FeaturesDiscover techniques to build, monitor, and optimize your data science projectsMove from prototyping to production using Comet and DevOps toolsGet to grips with the Comet experimentation platformBook DescriptionThis book provides concepts and practical use cases which can be used to quickly build, monitor, and optimize data science projects. Using Comet, you will learn how to manage almost every step of the data science process from data collection through to creating, deploying, and monitoring a machine learning model. The book starts by explaining the features of Comet, along with exploratory data analysis and model evaluation in Comet. You'll see how Comet gives you the freedom to choose from a selection of programming languages, depending on which is best suited to your needs. Next, you will focus on workspaces, projects, experiments, and models. You will also learn how to build a narrative from your data, using the features provided by Comet. Later, you will review the basic concepts behind DevOps and how to extend the GitLab DevOps platform with Comet, further enhancing your ability to deploy your data science projects. Finally, you will cover various use cases of Comet in machine learning, NLP, deep learning, and time series analysis, gaining hands-on experience with some of the most interesting and valuable data science techniques available.By the end of this book, you will be able to confidently build data science pipelines according to bespoke specifications and manage them through Comet.What you will learnPrepare for your project with the right dataUnderstand the purposes of different machine learning algorithmsGet up and running with Comet to manage and monitor your pipelinesUnderstand how Comet works and how to get the most out of itSee how you can use Comet for machine learningDiscover how to integrate Comet with GitLabWork with Comet for NLP, deep learning, and time series analysisWho this book is forThis book is for anyone who has programming experience, and wants to learn how to manage and optimize a complete data science lifecycle using Comet and other DevOps platforms. Although an understanding of basic data science concepts and programming concepts is needed, no prior knowledge of Comet and DevOps is required.
Erscheint lt. Verlag 26.8.2022
Vorwort Gideon Mendels
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80181-435-X / 180181435X
ISBN-13 978-1-80181-435-5 / 9781801814355
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99