Classical and discrete differential geometry - David Xianfeng Gu, Emil Saucan

Classical and discrete differential geometry

theory, applications and algorithms
Buch | Softcover
568 Seiten
2024 | 1. Auflage
CRC Press (Verlag)
978-1-032-39620-0 (ISBN)
56,10 inkl. MwSt
This book introduces differential geometry and cutting-edge findings from the discipline by incorporating both classical approaches and modern discrete differential geometry across all facets and applications, including graphics and imaging, physics and networks.

With curvature as the centerpiece, the authors present the development of differential geometry, from curves to surfaces, thence to higher dimensional manifolds; and from smooth structures to metric spaces, weighted manifolds and complexes, and to images, meshes and networks. The first part of the book is a differential geometric study of curves and surfaces in the Euclidean space, enhanced while the second part deals with higher dimensional manifolds centering on curvature by exploring the various ways of extending it to higher dimensional objects and more general structures and how to return to lower dimensional constructs. The third part focuses on computational algorithms in algebraic topology and conformal geometry, applicable for surface parameterization, shape registration and structured mesh generation.

The volume will be a useful reference for students of mathematics and computer science, as well as researchers and engineering professionals who are interested in graphics and imaging, complex networks, differential geometry and curvature.

David Xianfeng Gu is a SUNY Empire Innovation Professor of Computer Science and Applied Mathematics at State University of New York at Stony Brook, USA. His research interests focus on generalizing modern geometry theories to discrete settings and applying them in engineering and medical fields and recently on geometric views of optimal transportation theory. He is one of the major founders of an interdisciplinary field, Computational Conformal Geometry. Emil Saucan is Associate Professor of Applied Mathematics at Braude College of Engineering, Israel. His main research interest is geometry in general (including Geometric Topology), especially Discrete and Metric Differential Geometry and their applications to Imaging and Geometric Design, as well as Geometric Modeling. His recent research focuses on various notions of discrete Ricci curvature and their practical applications.

Section I Differential Geometry, Classical and Discrete 1. Curves 2. Surfaces: Gauss Curvature – First Definition 3. Metrization of Gauss Curvature 4. Gauss Curvature and Theorema Egregium 5. The Mean and Gauss Curvature Flows 6. Geodesics 7. Geodesics and Curvature 8. The Equations of Compatibility 9. The Gauss-Bonnet Theorem and the Poincare Index Theorem 10. Higher Dimensional Curvatures 11. Higher Dimensional Curvatures 12. Discrete Ricci Curvature and Flow 13. Weighted Manifolds and Ricci Curvature Revisited Section II Differential Geometry, Computational Aspects 14. Algebraic Topology 15. Homology and Cohomology Group 16. Exterior Calculus and Hodge Decomposition 17. Harmonic Map 18. Riemann Surface 19. Conformal Mapping 20. Discrete Surface Curvature Flows 21. Mesh Generation Based on Abel-Jacobi Theorem Section III Appendices 22. Appendix A 23. Appendix B 24. Appendix C

Erscheinungsdatum
Zusatzinfo Illustrationen
Verlagsort London
Sprache englisch
Maße 178 x 254 mm
Gewicht 1090 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
ISBN-10 1-032-39620-2 / 1032396202
ISBN-13 978-1-032-39620-0 / 9781032396200
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
61,00