Essays in Constructive Mathematics

Buch | Hardcover
211 Seiten
2004 | 2005 ed.
Springer-Verlag New York Inc.
978-0-387-21978-3 (ISBN)

Lese- und Medienproben

Essays in Constructive Mathematics - Harold M. Edwards
128,39 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Contents and treatment are fresh and very different from the standard treatments


Presents a fully constructive version of what it means to do algebra


The exposition is not only clear, it is friendly, philosophical, and considerate even to the most naive or inexperienced reader

Harold M. Edwards is Emeritus Professor of Mathematics at New York University. His previous books are Advanced Calculus (1969, 1980, 1993), Riemann's Zeta Function (1974, 2001), Fermat's Last Theorem (1977), Galois Theory (1984), Divisor Theory (1990) and Linear Algebra (1995). Readers of his Advanced Calculus will know that his preference for constructive mathematics is not new. In 1980 he was awarded the Steele Prize for mathematical exposition for the Riemann and Fermat books.

Preface * Synopsis * PART 1: A Fundamental Theorem * General Arithmetic * A Fundamental Theorem * Roots Field (Simple Algebraic Extensions) * Factorization of Polynomials with Integer Coefficients * A Factorization Algorithm * Validation of the Factorization Algorithm * About the Factorization Algorithm * Proof of the Fundamental Theorem * Minimal Splitting Polynomials * PART 2: Topics in Algebra * Galois' Fundamental Theorem * Algebraic Quantities * Adjunctions and the Factorization of Polynomials * Symmetric Polynomials and the Splitting Field of x^n + c_1x^{n-1} + ... + c_n * A Fundamental Theorem of Divisor Theory * PART 3: Some Quadratic Problems * Hypernumbers * Modules * The Class Semigroup * Multiplication of Modules and Module Classes * Is A a Square Mod p? * Gauss's Composition of Forms * The Construction of Compositions * PART 4: The Genus of an Algebraic Curve * Abel's Memoir * Euler's Addition Formula * An Algebraic Definition of the Genus * Newton's Polygon * Determination of the Genus * Holomorphic Differentials * The Riemann-Roch Theorem * The Genus is a Birational Invariant * PART 5: Miscellany * On the So-Called Fundamental Theorem of Algebra * Proof by Contradiction and the Sylow Theorems * Overview of 'Linear Algebra' * The Spectral Theorem * Kronecker as One of E.T. Bell's 'Men of Mathematics' * References

Zusatzinfo XX, 211 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Gewicht 1120 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Logik / Mengenlehre
ISBN-10 0-387-21978-1 / 0387219781
ISBN-13 978-0-387-21978-3 / 9780387219783
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich