Productive and Efficient Data Science with Python - Tirthajyoti Sarkar

Productive and Efficient Data Science with Python (eBook)

With Modularizing, Memory profiles, and Parallel/GPU Processing
eBook Download: PDF
2022 | 1st ed.
XXI, 383 Seiten
Apress (Verlag)
978-1-4842-8121-5 (ISBN)
Systemvoraussetzungen
62,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book focuses on the Python-based tools and techniques to help you become highly productive at all aspects of typical data science stacks such as statistical analysis, visualization, model selection, and feature engineering.

You'll review the inefficiencies and bottlenecks lurking in the daily business process and solve them with practical solutions. Automation of repetitive data science tasks is a key mindset that is promoted throughout the book. You'll learn how to extend the existing coding practice to handle larger datasets with high efficiency with the help of advanced libraries and packages that already exist in the Python ecosystem. 

The book focuses on topics such as how to measure the memory footprint and execution speed of machine learning models, quality test a data science pipelines, and modularizing a data science pipeline for app development. You'll review Python libraries which come in very handy for automating and speeding up the day-to-day tasks.  

In the end, you'll understand and perform data science and machine learning tasks beyond the traditional methods and utilize the full spectrum of the Python data science ecosystem to increase productivity.  

What You'll Learn

  • Write fast and efficient code for data science and machine learning
  • Build robust and expressive data science pipelines
  • Measure memory and CPU profile for machine learning methods
  • Utilize the full potential of GPU for data science tasks
  • Handle large and complex data sets efficiently

Who This Book Is For 

Data scientists, data analysts, machine learning engineers, Artificial intelligence practitioners, statisticians who want to take full advantage of Python ecosystem.





Dr. Tirthajyoti Sarkar lives in the San Francisco Bay area works as a Data Science and Solutions Engineering Manager at Adapdix Corp., where he architects Artificial intelligence and Machine learning solutions for edge-computing based systems powering the Industry 4.0 and Smart manufacturing revolution across a wide range of industries. Before that, he spent more than a decade developing best-in-class semiconductor technologies for power electronics. 

He has published data science books, and regularly contributes highly cited AI/ML-related articles on top platforms such as KDNuggets and Towards Data Science. Tirthajyoti has developed multiple open-source software packages in the field of statistical modeling and data analytics. He has 5 US patents and more than thirty technical publications in international journals and conferences. 

He conducts regular workshops and participates in expert panels on various AI/ML topics and contributes to the broader data science community in numerous ways. Tirthajyoti holds a Ph.D. from the University of Illinois and a B.Tech degree from the Indian Institute of Technology, Kharagpur.


This book focuses on the Python-based tools and techniques to help you become highly productive at all aspects of typical data science stacks such as statistical analysis, visualization, model selection, and feature engineering.You ll review the inefficiencies and bottlenecks lurking in the daily business process and solve them with practical solutions. Automation of repetitive data science tasks is a key mindset that is promoted throughout the book. You ll learn how to extend the existing coding practice to handle larger datasets with high efficiency with the help of advanced libraries and packages that already exist in the Python ecosystem. The book focuses on topics such as how to measure the memory footprint and execution speed of machine learning models, quality test a data science pipelines, and modularizing a data science pipeline for app development. You ll review Python libraries which come in very handy for automating and speeding up the day-to-day tasks.  In the end, you ll understand and perform data science and machine learning tasks beyond the traditional methods and utilize the full spectrum of the Python data science ecosystem to increase productivity.  What You ll Learn Write fast and efficient code for data science and machine learningBuild robust and expressive data science pipelines Measure memory and CPU profile for machine learning methods Utilize the full potential of GPU for data science tasks Handle large and complex data sets efficiently Who This Book Is For Data scientists, data analysts, machine learning engineers, Artificial intelligence practitioners, statisticians who want to take full advantage of Python ecosystem.
Erscheint lt. Verlag 1.7.2022
Zusatzinfo XXI, 383 p. 202 illus., 37 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Data Science • Data Science Pipeline • High Performance Computing • Keras • machine learning • matplotlib • NumPy • Object Oriented Programming • Pandas • Parallel Processing • Python • scikit-learn • seaborn
ISBN-10 1-4842-8121-7 / 1484281217
ISBN-13 978-1-4842-8121-5 / 9781484281215
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Build memory-efficient cross-platform applications using .NET Core

von Trevoir Williams

eBook Download (2024)
Packt Publishing (Verlag)
29,99
Learn asynchronous programming by building working examples of …

von Carl Fredrik Samson

eBook Download (2024)
Packt Publishing Limited (Verlag)
29,99