Elements of Data Science, Machine Learning, and Artificial Intelligence Using R - Frank Emmert-Streib, Salissou Moutari, Matthias Dehmer

Elements of Data Science, Machine Learning, and Artificial Intelligence Using R

Buch | Hardcover
XIX, 575 Seiten
2023 | 2023
Springer International Publishing (Verlag)
978-3-031-13338-1 (ISBN)
69,54 inkl. MwSt
The textbook provides students with tools they need to analyze complex data using methods from data science, machine learning and artificial intelligence. The authors include both the presentation of methods along with applications using the programming language R, which is the gold standard for analyzing data. The authors cover all three main components of data science: computer science; mathematics and statistics; and domain knowledge. The book presents methods and implementations in R side-by-side, allowing the immediate practical application of the learning concepts. Furthermore, this teaches computational thinking in a natural way. The book includes exercises, case studies, Q&A and examples.

Frank Emmert-Streib is Professor of Data Science at Tampere University (Finland). He leads the Predictive Society and Data Analytics Lab, which pursues innovative research in deep learning and natural language processing. The Lab develops and applies high-dimensional methods in machine learning, statistics and artificial intelligence that can be used for knowledge extraction of data from biology, medicine, social media, social sciences, marketing or business. Salissou Moutari is Senior Lecturer at Queen's University Belfast (UK) and Interim Director of Research of the Mathematical Science Research Centre (MSRC). His research interests include mathematical modelling, optimization, machine learning and data science, and the applications of these methods to problems from traffic, transportation and distribution systems, production planning and industrial processes.Matthias Dehmer is Professor at UMIT (Austria) and also has a position at Swiss Distance University of Applied Sciences, Brig, Switzerland. His research interests are in complex networks, complexity, data science, machine learning, big data analytics, and information theory. In particular, he is working on machine learning based methods to analyse high-dimensional data.

Introduction.- Introduction to learning from data.- Part 1: General topics.- Prediction models.- Error measures.- Resampling.- Data types.- Part 2: Core methods.- Maximum Likelihood & Bayesian analysis.- Clustering.- Dimension Reduction.- Classification.- Hypothesis testing.- Linear Regression.- Model Selection.- Part 3: Advanced topics.- Regularization.- Deep neural networks.- Multiple hypothesis testing.- Survival analysis.- Generalization error.- Theoretical foundations.- Conclusion.

Erscheinungsdatum
Zusatzinfo XIX, 575 p. 162 illus., 156 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 1222 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Schlagworte algorithms • Bayesian analysis • data driven sciences • Data Science • Learning from Data • Prediction models
ISBN-10 3-031-13338-2 / 3031133382
ISBN-13 978-3-031-13338-1 / 9783031133381
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Daten importieren, bereinigen, umformen und visualisieren

von Hadley Wickham; Mine Çetinkaya-Rundel …

Buch | Softcover (2024)
O'Reilly (Verlag)
54,90