Elements of Data Science, Machine Learning, and Artificial Intelligence Using R
Springer International Publishing (Verlag)
978-3-031-13338-1 (ISBN)
Frank Emmert-Streib is Professor of Data Science at Tampere University (Finland). He leads the Predictive Society and Data Analytics Lab, which pursues innovative research in deep learning and natural language processing. The Lab develops and applies high-dimensional methods in machine learning, statistics and artificial intelligence that can be used for knowledge extraction of data from biology, medicine, social media, social sciences, marketing or business. Salissou Moutari is Senior Lecturer at Queen's University Belfast (UK) and Interim Director of Research of the Mathematical Science Research Centre (MSRC). His research interests include mathematical modelling, optimization, machine learning and data science, and the applications of these methods to problems from traffic, transportation and distribution systems, production planning and industrial processes.Matthias Dehmer is Professor at UMIT (Austria) and also has a position at Swiss Distance University of Applied Sciences, Brig, Switzerland. His research interests are in complex networks, complexity, data science, machine learning, big data analytics, and information theory. In particular, he is working on machine learning based methods to analyse high-dimensional data.
Introduction.- Introduction to learning from data.- Part 1: General topics.- Prediction models.- Error measures.- Resampling.- Data types.- Part 2: Core methods.- Maximum Likelihood & Bayesian analysis.- Clustering.- Dimension Reduction.- Classification.- Hypothesis testing.- Linear Regression.- Model Selection.- Part 3: Advanced topics.- Regularization.- Deep neural networks.- Multiple hypothesis testing.- Survival analysis.- Generalization error.- Theoretical foundations.- Conclusion.
Erscheinungsdatum | 05.10.2023 |
---|---|
Zusatzinfo | XIX, 575 p. 162 illus., 156 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 1222 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Nachrichtentechnik | |
Schlagworte | algorithms • Bayesian analysis • data driven sciences • Data Science • Learning from Data • Prediction models |
ISBN-10 | 3-031-13338-2 / 3031133382 |
ISBN-13 | 978-3-031-13338-1 / 9783031133381 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich