Biologically Inspired Series-Parallel Hybrid Robots
Academic Press Inc (Verlag)
978-0-323-88482-2 (ISBN)
Shivesh Kumar is an assistant professor at the Division of Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology in Gothenburg, Sweden. He is also a visiting researcher at the Robotics Innovation Center, German Research Center for Artificial Intelligence in Bremen, Germany. He obtained his PhD degree from the faculty of Mathematics and Computer Science at the University of Bremen (2019). His research interests include kinematics, dynamics, and control of robots with applications in the fields of exoskeletons, humanoids, rehabilitation, and industrial automation. Andreas Mueller obtained diploma degrees in mathematics, electrical engineering, and mechanical engineering, and a PhD in mechanics. He received his Habilitation in mechanics and is currently professor and director of the Institute of Robotics at the Johannes Kepler University, Linz, Austria. His current research interests include holistic modelling, model-based and optimal control of mechatronic systems, redundant robotic systems, parallel kinematic machines, biomechanics, and computational dynamics. Frank Kirchner studied computer science and neurobiology at the University Bonn, where he received his PhD degree in computer science. He was senior scientist at the Gesellschaft für Mathematik und Datenverarbeitung (GMD) in Sankt Augustin, Germany, and a Senior Scientist at the Department for Electrical Engineering at Northeastern University in Boston, USA. Dr. Kirchner was first appointed adjunct and then tenure track assistant professor at the Northeastern University, and then as a full professor at the University of Bremen. Since December 2005, Dr. Kirchner has also been director of the Robotics Innovation Centre (RIC) in Bremen.
PART 1: Introduction
1. Motivation
2. Modular and decentralized design principles and applications
PART 2: Geometric Analysis
3. Methods for geometric analysis of parallel mechanisms
4. 2-DOF orientational parallel mechanisms
5. 3-DOF orientational parallel mechanism
PART 3: Kinematics, Dynamics, and Control
6. Kinematics and dynamics of tree type systems
7. Modular algorithms for kinematics and dynamics of series-parallel hybrid robots
8. Forward dynamics with constraint embedding for dynamic simulation
9. Whole-body control
10. Whole-body trajectory optimization
PART 4: Case Studies on Mechatronic System Design
11. Charlie, a hominidae walking robot
12. Multi-legged robot Mantis
13. Sherpa, a family of wheeled-leg rovers
14. Recupera exoskeletons
15. RH5 Pedes humanoid
16. ARTER: a walking excavator robot
PART 5: Software and Outlook
17. PHOBOS: creation and maintenance of complex robot models
18. HyRoDyn: Hybrid Robot Dynamics
19. Design of a flexible bio-inspired robot for inspection of pipelines
20. Optimization of parallel mechanisms with joint limits and collision constraints
Erscheinungsdatum | 14.12.2024 |
---|---|
Zusatzinfo | Approx. 249 illustrations (149 in full color); Illustrations |
Verlagsort | Oxford |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 450 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik | |
ISBN-10 | 0-323-88482-2 / 0323884822 |
ISBN-13 | 978-0-323-88482-2 / 9780323884822 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich