Sensing, Data Managing, and Control Technologies for Agricultural Systems (eBook)
VIII, 332 Seiten
Springer International Publishing (Verlag)
978-3-031-03834-1 (ISBN)
Agricultural automation is the emerging technologies which heavily rely on computer-integrated management and advanced control systems. The tedious farming tasks had been taken over by agricultural machines in last century, in new millennium, computer-aided systems, automation, and robotics has been applied to precisely manage agricultural production system. With agricultural automation technologies, sustainable agriculture is being developed based on efficient use of land, increased conservation of water, fertilizer and energy resources. The agricultural automation technologies refer to related areas in sensing & perception, reasoning & learning, data communication, and task planning & execution. Since the literature on this diverse subject is widely scattered, it is necessary to review current status and capture the future challenges through a comprehensive monograph.
In this book we focus on agricultural automation and provide critical reviews of advanced control technologies, their merits and limitations, application areas and research opportunities for further development. This collection thus serves as an authoritative treatise that can help researchers, engineers, educators, and students in the field of sensing, control, and automation technologies for production agriculture.
Dr. Shaochun Ma is a 'Famous Ideological and Political Teacher' of China's Ministry of Education. He obtained his Ph.D. degree in Agricultural and Biological Engineering from the University of Illinois at Urbana-Champaign. He joined the faculty of the College of Engineering by 'Talents Program' of China Agricultural University. His teaching and research focuses on Hydraulic and Pneumatic Transmission, Engineering Fluid Dynamics, machine intelligence for production agriculture, and agricultural systems modelling, simulation, and control.
Dr. Tao Lin is a a ZJU-100 Professor in the College of Biosystems Engineering and Food Science at Zhejiang University. He obtained his Ph.D. and M.S. degrees in Agricultural and Biological Engineering from the University of Illinois at Urbana-Champaign. His research focuses on agricultural big data systems informatics and analytics, ranging from spatiotemporal analysis, remote sending, GIS, optimization modeling analysis, to decision support systems. He has published more than 30 peer-reviewed journal articles.
Prof. Enrong Mao teaches and conducts research on digital design and experimental method for tractor and harvester, automation, hydraulic control, human-factors engineering, and computerized simulation. He served as an Associate Dean of College of Engineering at China Agricultural University, P.R.China during 2002-2019.
Prof. Zhenghe Song teaches and conducts research on design and experimental method for tractor and harvester, automation, hydraulic control, and computerized simulation. He is currently the Dean of College of Engineering at China Agricultural University, P. R. China.
Prof K. C. Ting is Professor and Head Emeritus, Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, USA. His teaching and research emphasize systematic human supervised cyber-physical integration of engineering and agriculture for advancement of complex agricultural production and processing systems. He served as a Vice Dean of International Campus, Zhejiang University, China during 2017-2020.
Erscheint lt. Verlag | 6.6.2022 |
---|---|
Reihe/Serie | Agriculture Automation and Control | Agriculture Automation and Control |
Zusatzinfo | VIII, 332 p. 135 illus., 102 illus. in color. |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik ► Statistik | |
Naturwissenschaften ► Biologie | |
Weitere Fachgebiete ► Land- / Forstwirtschaft / Fischerei | |
Schlagworte | agricultural automation • agricultural robots • guidance and steering control • internet of things • machine learning • sensing and perception |
ISBN-10 | 3-031-03834-7 / 3031038347 |
ISBN-13 | 978-3-031-03834-1 / 9783031038341 |
Haben Sie eine Frage zum Produkt? |
Größe: 14,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich