Introduction to Environmental Data Science - William W. Hsieh

Introduction to Environmental Data Science

Buch | Hardcover
647 Seiten
2023
Cambridge University Press (Verlag)
978-1-107-06555-0 (ISBN)
74,80 inkl. MwSt
This book provides a comprehensive guide to machine learning and statistics for students and researchers of environmental data science. A broad range of methods are covered together with the relevant background mathematics. End-of-chapter exercises and online data sets are included.
Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of climate change; and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics is covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms and deep learning, as well as the recent merging of machine learning and physics. End‑of‑chapter exercises allow readers to develop their problem-solving skills, and online datasets allow readers to practise analysis of real data.

William W. Hsieh is a professor emeritus in the Department of Earth, Ocean and Atmospheric Sciences at the University of British Columbia. Known as a pioneer in introducing machine learning to environmental science, he has written over 100 peer-reviewed journal papers on climate variability, machine learning, atmospheric science, oceanography, hydrology, and agricultural science. He is the author of the book Machine Learning Methods in the Environmental Sciences ( Cambridge University Press, 2009), the first single-authored textbook on machine learning for environmental scientists. Currently retired in Victoria, British Columbia, he enjoys growing organic vegetables.

1. Introduction; 2. Basics; 3. Probability distributions; 4. Statistical inference; 5. Linear regression; 6. Neural networks; 7. Nonlinear optimization; 8. Learning and generalization; 9. Principal components and canonical correlation; 10. Unsupervised learning; 11. Time series; 12. Classification; 13. Kernel methods; 14. Decision trees, random forests and boosting; 15. Deep learning; 16. Forecast verification and post-processing; 17. Merging of machine learning and physics; Appendices; References; Index.

Erscheinungsdatum
Verlagsort Cambridge
Sprache englisch
Maße 175 x 250 mm
Gewicht 1330 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Biologie Ökologie / Naturschutz
Technik Umwelttechnik / Biotechnologie
ISBN-10 1-107-06555-0 / 1107065550
ISBN-13 978-1-107-06555-0 / 9781107065550
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90