Consistent Distributed Storage - Vincent Gramoli, Nicolas Nicolaou, Alexander A. Schwarzmann

Consistent Distributed Storage

Buch | Softcover
XV, 176 Seiten
2021
Springer International Publishing (Verlag)
978-3-031-00887-0 (ISBN)
64,19 inkl. MwSt
Providing a shared memory abstraction in distributed systems is a powerful tool that can simplify the design and implementation of software systems for networked platforms. This enables the system designers to work with abstract readable and writable objects without the need to deal with the complexity and dynamism of the underlying platform. The key property of shared memory implementations is the consistency guarantee that it provides under concurrent access to the shared objects. The most intuitive memory consistency model is atomicity because of its equivalence with a memory system where accesses occur serially, one at a time. Emulations of shared atomic memory in distributed systems is an active area of research and development. The problem proves to be challenging, and especially so in distributed message passing settings with unreliable components, as is often the case in networked systems. We present several approaches to implementing shared memory services with the help of replication on top of message-passing distributed platforms subject to a variety of perturbations in the computing medium.

Vincent Gramoli is a Future Fellow of the Australian Research Council at the University of Sydney, Australia and a Visiting Professor at EPFL, Switzerland. Vincent started his research on the topic of reconfigurable atomic memory while visiting the University of Connecticut and MIT (USA). He then worked in the area of large-scale distributed systems at INRIA (France) and on the slicing problem at Cornell University (USA). He moved to the University of Neuchatel and EPFL (Switzerland), where he contributed to the development of the Transactional Memory stack. He obtained his Ph.D. from Universite de Rennes and his Habilitation from Sorbonne University. His interest lies in the security and fault tolerance of distributed computing.Nicolas Nicolaou is a co-founder and a senior scientist and algorithms engineer at Algolysis Ltd. He held various academic positions as a visiting faculty until 2014, as an IEF Marie Curie Fellow at IMDEA Networks Institute (2014-2016), a short-term scholar at MIT (2017), and a PostDoc Researcher at the KIOS Research Center of Excellence (2017-2019) before departing for an industrial position in 2019. He holds a Ph.D. (2011) and a M.Sc. (2006) from the University of Connecticut and a B.Sc. (2003) from the University of Cyprus. His main research interests lie in the areas of distributed systems, design and analysis of fault-tolerant distributed algorithms, distributed ledgers (blockchains), security for embedded devices and critical infrastructures, and sensor networks.Alexander A. Schwarzmann is the Dean of the School of Computer and Cyber Sciences at Augusta University in Georgia, USA. He holds a Ph.D. from Brown University (1992), M.S. from Cornell University (1981), and a B.S. from Stevens Institute of Technology (1979), all in Computer Science, and he did his post-doctoral work at MIT (USA). Previously, he worked at Bell Labs, Digital Equipment Corp., and the University of Connecticut, where he was the Head of Computer Science & Engineering, and the Founding Director of the Center for Voting Technology Research. His professional interests are in Distributed Computing, Fault-tolerance, and Security and Integrity of Electronic Voting Systems. He authored over 150 technical articles, 3 books, and 1 patent. He is also a Vigneron d'Honneur of Jurade de Saint-Emilion.

Acknowledgments.- Outline.- Introduction.- Model of Computation.- The Static Environment.- The Single-Writer Setting.- The Multiple-Writer Setting.- The Dynamic Environment.- RAMBO: Reconfigurable Dynamic Memory.- RDS: Integrated Reconfigurations.- DynaStore: Incremental Reconfigurations.- Concluding Remarks and Looking Ahead.- Bibliography.- Authors' Biographies.- Index .

Erscheinungsdatum
Reihe/Serie Synthesis Lectures on Distributed Computing Theory
Zusatzinfo XV, 176 p.
Verlagsort Cham
Sprache englisch
Original-Titel Consistent Distributed Storage
Maße 191 x 235 mm
Gewicht 380 g
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Kryptologie
ISBN-10 3-031-00887-1 / 3031008871
ISBN-13 978-3-031-00887-0 / 9783031008870
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich