Advances in Bias and Fairness in Information Retrieval
Springer International Publishing (Verlag)
978-3-031-09315-9 (ISBN)
The 9 full papers and 4 short papers were carefully reviewed and selected from 34 submissions. The papers cover topics that go from search and recommendation in online dating, education, and social media, over the impact of gender bias in word embeddings, to tools that allow to explore bias and fairnesson the Web.
Popularity Bias in Collaborative Filtering-Based Multimedia Recommender Systems.- Recommender Systems and Users' Behaviour Effect on Choice's Distribution and Quality.- Sequential Nature of Recommender Systems Disrupts the Evaluation Process.- Towards an Approach for Analyzing Dynamic Aspects of Bias and Beyond-Accuracy Measures.- A Crowdsourcing Methodology to Measure Algorithmic Bias in Black-box Systems: A Case Study with COVID-related Searches.- The Unfairness of Active Users and Popularity Bias in Point-of-Interest Recommendation.- The Unfairness of Popularity Bias in Book Recommendation.- Mitigating Popularity Bias in Recommendation: Potential and Limits of Calibration Approaches.- Analysis of Biases in Calibrated Recommendations.- Do Perceived Gender Biases in Retrieval Results affect Users' Relevance Judgements?.- Enhancing Fairness in Classification Tasks with Multiple Variables: a Data- and Model-Agnostic Approach.- Keyword Recommendation for Fair Search.- FARGO: a Fair, context-AwaRe, Group recOmmender system.
Erscheinungsdatum | 23.06.2022 |
---|---|
Reihe/Serie | Communications in Computer and Information Science |
Zusatzinfo | X, 155 p. 35 illus., 30 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 267 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
Informatik ► Office Programme ► Outlook | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Informatik ► Weitere Themen ► Hardware | |
Schlagworte | Applications • Artificial Intelligence • Collaborative Filtering • Computer Networks • Computer Science • Computer systems • conference proceedings • Electronic Commerce • Human-Computer Interaction (HCI) • Informatics • Information Retrieval • machine learning • Network Protocols • personalizations • recommendation algorithms • Recommendation Systems • Recommender Systems • Research • Search Engines • User Interfaces |
ISBN-10 | 3-031-09315-1 / 3031093151 |
ISBN-13 | 978-3-031-09315-9 / 9783031093159 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich