Werde ein Data Head -  Alex J. Gutman,  Jordan Goldmeier

Werde ein Data Head (eBook)

Data Science, Machine Learning und Statistik verstehen und datenintensive Jobs meistern
eBook Download: PDF
2022 | 1. Auflage
268 Seiten
O'Reilly Verlag
978-3-96010-667-8 (ISBN)
Systemvoraussetzungen
34,90 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Fundierte Datenkompetenz für den Arbeitsplatz entwickeln - auch ohne Programmierkenntnisse

  • Jenseits der Buzzwords: zentrale Konzepte in Data Science, Statistik und Machine Learning wirklich verstehen
  • Das Buch vermittelt Grundwissen und eine datenorientierte Denkweise anhand klarer, gut nachvollziehbarer Alltagsbeispiele
  • Es schließt die Kommunikationslücke zwischen Data Scientists, Führungskräften und all denjenigen, die täglich mit Daten umgehen müssen

Dieses Buch ist ein umfassender Leitfaden für das Verständnis von Datenanalyse am Arbeitsplatz. Alex Gutman und Jordan Goldmeier lüften den Vorhang der Data Science und geben Ihnen die Sprache und die Werkzeuge an die Hand, die Sie benötigen, um informiert mitreden zu können, kritisch über die Auswertung von Daten zu sprechen und die richtigen Fragen zu stellen. Dank dieses Buchs kann jede:r ein Data Head werden und aktiv an Data Science, Statistik und Machine Learning teilnehmen - auch ohne einen technischen Background.
In diesem unterhaltsamen und gut verständlichen Buch werden die aktuellen, zum Teil komplexen Data-Science- und Statistik-Konzepte anhand einfacher Beispiele und Analogien veranschaulicht. Sie lernen statistisches Denken, das Vermeiden häufiger Fallstricke bei der Interpretation von Daten, und Sie erfahren, was es mit Machine Learning, Textanalyse, Deep Learning und künstlicher Intelligenz wirklich auf sich hat. Wenn Sie in Ihrem Unternehmen konkret mit Daten arbeiten, Führungskraft oder angehender Data Scientist sind, zeigt Ihnen dieses Buch, wie Sie ein echter Data Head werden.



Alex J. Gutman ist Data Scientist, Unternehmenstrainer und Accredited Professional Statistician®. Sein beruflicher Schwerpunkt liegt auf statistischem und maschinellem Lernen, und er verfügt über umfangreiche Erfahrungen als Data Scientist für das US-Verteidigungsministerium und zwei Fortune-50-Unternehmen. Seinen Doktortitel in angewandter Mathematik erhielt er vom Air Force Institute of Technology. Jordan Goldmeier ist ein international anerkannter Analytik- und Datenvisualisierungs-Experte, Autor und Redner. Er wurde sieben Mal mit dem Microsoft Most Valuable Professional Award ausgezeichnet und hat Mitglieder von Pentagon und Fortune-500-Unternehmen in Analytik unterrichtet. Er ist Autor der Bücher Advanced Excel Essentials und Dashboards for Excel.

Alex J. Gutman ist Data Scientist, Unternehmenstrainer und Accredited Professional Statistician®. Sein beruflicher Schwerpunkt liegt auf statistischem und maschinellem Lernen, und er verfügt über umfangreiche Erfahrungen als Data Scientist für das US-Verteidigungsministerium und zwei Fortune-50-Unternehmen. Seinen Doktortitel in angewandter Mathematik erhielt er vom Air Force Institute of Technology. Jordan Goldmeier ist ein international anerkannter Analytik- und Datenvisualisierungs-Experte, Autor und Redner. Er wurde sieben Mal mit dem Microsoft Most Valuable Professional Award ausgezeichnet und hat Mitglieder von Pentagon und Fortune-500-Unternehmen in Analytik unterrichtet. Er ist Autor der Bücher Advanced Excel Essentials und Dashboards for Excel.

Erscheint lt. Verlag 2.5.2022
Übersetzer Jørgen W. Lang
Verlagsort Heidelberg
Sprache deutsch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Schlagworte Big Data • Data Mining • Data Science • Datenanalyse • Deep learning • Entscheidungsbäume • KI • K-means • Künstliche Intelligenz • Lineare Regression • machine learning • Maschinelles Lernen • Neuronale Netze • Statistik • Wahrscheinlichkeit
ISBN-10 3-96010-667-X / 396010667X
ISBN-13 978-3-96010-667-8 / 9783960106678
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
37,43
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99