Multiblock Data Fusion in Statistics and Machine Learning (eBook)

Applications in the Natural and Life Sciences
eBook Download: PDF
2022 | 1. Auflage
416 Seiten
John Wiley & Sons (Verlag)
978-1-119-60098-5 (ISBN)

Lese- und Medienproben

Multiblock Data Fusion in Statistics and Machine Learning - Age K. Smilde, Tormod Næs, Kristian Hovde Liland
Systemvoraussetzungen
134,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Multiblock Data Fusion in Statistics and Machine Learning

Explore the advantages and shortcomings of various forms of multiblock analysis, and the relationships between them, with this expert guide

Arising out of fusion problems that exist in a variety of fields in the natural and life sciences, the methods available to fuse multiple data sets have expanded dramatically in recent years. Older methods, rooted in psychometrics and chemometrics, also exist.

Multiblock Data Fusion in Statistics and Machine Learning: Applications in the Natural and Life Sciences is a detailed overview of all relevant multiblock data analysis methods for fusing multiple data sets. It focuses on methods based on components and latent variables, including both well-known and lesser-known methods with potential applications in different types of problems.

Many of the included methods are illustrated by practical examples and are accompanied by a freely available R-package. The distinguished authors have created an accessible and useful guide to help readers fuse data, develop new data fusion models, discover how the involved algorithms and models work, and understand the advantages and shortcomings of various approaches.

This book includes:

* A thorough introduction to the different options available for the fusion of multiple data sets, including methods originating in psychometrics and chemometrics

* Practical discussions of well-known and lesser-known methods with applications in a wide variety of data problems

* Included, functional R-code for the application of many of the discussed methods

Perfect for graduate students studying data analysis in the context of the natural and life sciences, including bioinformatics, sensometrics, and chemometrics, Multiblock Data Fusion in Statistics and Machine Learning: Applications in the Natural and Life Sciences is also an indispensable resource for developers and users of the results of multiblock methods.

Age K. Smilde is a Professor of Biosystems Data Analysis at the Swammerdam Institute for Life Sciences at the University of Amsterdam. He also holds a part-time position at the Department of Machine Intelligence of Simula Metropolitan Center for Digital Engineering in Oslo, Norway. His research interest is multiblock data analysis and its implementation in different fields of life sciences. He is currently the Editor-in-Chief of the Journal of Chemometrics. Tormod Næs is a Senior Scientist at Nofima, a food research institute in Norway. He is also currently employed as adjoint professor at the Department of Food Science, University of Copenhagen, Denmark and as extraordinary professor at University of Stellenbosch, South Africa. His main research interest is multivariate analysis with special emphasis on applications in sensory science and spectroscopy. Kristian Hovde Liland is an Associate Professor with a top scientist scholarship in Data Science at the Norwegian University of Life Sciences and works in the areas of chemometrics, data analysis and machine learning. His main research is in linear prediction modelling, spectroscopy, and the transition between chemometrics and machine learning.

Erscheint lt. Verlag 25.4.2022
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Biologie
Naturwissenschaften Chemie Organische Chemie
Schlagworte Artificial Intelligence • Bioinformatics & Computational Biology • Bioinformatik • Bioinformatik u. Computersimulationen in der Biowissenschaften • Biowissenschaften • Chemie • Chemistry • Chemometrics & Data Handling • Chemometrie u. Datenverarbeitung • Computer Science • Informatik • Künstliche Intelligenz • Life Sciences • Maschinelles Lernen
ISBN-10 1-119-60098-7 / 1119600987
ISBN-13 978-1-119-60098-5 / 9781119600985
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 23,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99