An Introduction to Latent Class Analysis (eBook)
XI, 190 Seiten
Springer Singapore (Verlag)
978-981-19-0972-6 (ISBN)
This book provides methods and applications of latent class analysis, and the following topics are taken up in the focus of discussion: basic latent structure models in a framework of generalized linear models, exploratory latent class analysis, latent class analysis with ordered latent classes, a latent class model approach for analyzing learning structures, the latent Markov analysis for longitudinal data, and path analysis with latent class models. The maximum likelihood estimation procedures for latent class models are constructed via the expectation-maximization (EM) algorithm, and along with it, latent profile and latent trait models are also treated. Entropy-based discussions for latent class models are given as advanced approaches, for example, comparison of latent classes in a latent class cluster model, assessing latent class models, path analysis, and so on. In observing human behaviors and responses to various stimuli and test items, it is valid to assume they are dominated by certain factors. This book plays a significant role in introducing latent structure analysis to not only young researchers and students studying behavioral sciences, but also to those investigating other fields of scientific research.
Nobuoki Eshima was born in Fukuoka, Japan, in 1957. He was received B.Sc. and D.Sc. degrees in Mathematics from Kyushu University, Fukuoka, Japan, in 1980 and 1993, respectively. In 1993, he joined Department of Statistics, Faculty of General Education, Nagasaki University, as Associate Professor. In 1996, he joined Department of Medical Information Analysis, Faculty of Medicine, Oita Medical University, as Professor. In 2016, he joined Center for Educational Outreach and Admissions, Kyoto University, as Professor. In 2021, he was granted the title of Emeritus Professor of Oita University, and from 2021, he is Guest Professor of Faculty of Medicine, Kurume University.
This book provides methods and applications of latent class analysis, and the following topics are taken up in the focus of discussion: basic latent structure models in a framework of generalized linear models, exploratory latent class analysis, latent class analysis with ordered latent classes, a latent class model approach for analyzing learning structures, the latent Markov analysis for longitudinal data, and path analysis with latent class models. The maximum likelihood estimation procedures for latent class models are constructed via the expectation-maximization (EM) algorithm, and along with it, latent profile and latent trait models are also treated. Entropy-based discussions for latent class models are given as advanced approaches, for example, comparison of latent classes in a latent class cluster model, assessing latent class models, path analysis, and so on. In observing human behaviors and responses to various stimuli and test items, it is valid to assume they are dominated by certain factors. This book plays a significant role in introducing latent structure analysis to not only young researchers and students studying behavioral sciences, but also to those investigating other fields of scientific research.
Erscheint lt. Verlag | 9.4.2022 |
---|---|
Reihe/Serie | Behaviormetrics: Quantitative Approaches to Human Behavior | Behaviormetrics: Quantitative Approaches to Human Behavior |
Zusatzinfo | XI, 190 p. 45 illus., 1 illus. in color. |
Sprache | englisch |
Themenwelt | Geisteswissenschaften ► Psychologie ► Test in der Psychologie |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Wirtschaft ► Allgemeines / Lexika | |
Schlagworte | Analysis of Learning Structures • Confirmatory Latent Class Models • Entropy-based Approach for Assessing Latent Class Models • Entropy-based Path Analysis • Exploratory Latent Class Analysis • Latent Markov Models |
ISBN-10 | 981-19-0972-5 / 9811909725 |
ISBN-13 | 978-981-19-0972-6 / 9789811909726 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 2,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich