Geometric Harmonic Analysis I
Springer International Publishing (Verlag)
978-3-031-05949-0 (ISBN)
Volume I establishes a sharp version of the Divergence Theorem (aka Fundamental Theorem of Calculus) which allows for an inclusive class of vector fields whose boundary trace is only assumed to exist in a nontangential pointwise sense.
Prefacing this Series.- Statement of Main Results Concerning the Divergence Theorem.- Examples, Counterexamples, and Additional Perspectives.- Measure Theoretical and Topological Rudiments.- Sets of Locally Finite Perimeter and Other Categories of Euclidean Sets.- Tools from Harmonic Analysis.- Quasi-Metric Spaces and Spaces of Homogenous Type.- Open Sets with Locally Finite Surface Measures and Boundary Behavior.- Proofs of Main Results Pertaining to the Divergence Theorem.- II: Function Spaces Measuring Size and Smoothness on Rough Sets.- Preliminary Functional Analytic Matters.- Selected Topics in Distribution Theory.- Hardy Spaces on Ahlfors Regular Sets.- Morrey-Campanato Spaces, Morrey Spaces, and Their Pre-Duals on Ahlfors Regular Sets.- Besov and Triebel-Lizorkin Spaces on Ahlfors Regular Sets.- Boundary Traces from Weighted Sobolev Spaces in Besov Spaces.- Besov and Triebel-Lizorkin Spaces in Open Sets.- Strong and Weak Normal Boundary Traces of Vector Fields in Hardy and Morney Spaces.- Sobolev Spaces on the Geometric Measure Theoretic boundary of Sets of Locally Finite Perimeter.- III: Integral Representations Calderón-Zygmund Theory, Fatou Theorems, and Applications to Scattering.- Integral Representations and Integral Identities.- Calderón-Zygmund Theory on Uniformly Rectifiable Sets.- Quantitative Fatou-Type Theorems in Arbitrary UR Domains.- Scattering by Rough Obstacles.- IV: Boundary Layer Potentials on Uniformly Rectifiable Domains, and Applications to Complex Analysis.- Layer Potential Operators on Lebesgue and Sobolev Spaces.- Layer Potential Operators on Hardy, BMO, VMO, and Hölder Spaces.- Layer Potential Operators on Calderón, Morrey-Campanato, and Morrey Spaces.- Layer Potential Operators Acting from Boundary Besov and Triebel-Lizorkin Spaces.- Generalized double Layers in Uniformly Rectifiable Domains.- Green Formulas and Layer Potential Operators for the Stokes System.- Applications to Analysis in Several Complex Variables.- V: Fredholm Theory and Finer Estimates for Integral Operators, with Applications to Boundary Problems.- Abstract Fredholm Theory.- Distinguished Coefficient Tensors.- Failure of Fredholm Solvability for Weakly Elliptic Systems.- Quantifying Global and Infinitesimal Flatness.- Norm Estimates and Invertibility Results for SIO's on Unbounded Boundaries.- Estimating Chord-Dot-Normal SIO's on Domains with Compact Boundaries.- The Radon-Carleman Problem.- Fredholmness and Invertibility of Layer Potentials on Compact Boundaries.- Green Functions and Uniqueness for Boundary Problems for Second-Order Systems.- Green Functions and Poisson Kernels for the Laplacian.- Boundary Value Problems for Elliptic Systems in Rough Domains.
Erscheinungsdatum | 08.11.2022 |
---|---|
Reihe/Serie | Developments in Mathematics |
Zusatzinfo | XXVIII, 924 p. 44 illus., 20 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 1586 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | Ahlfors regular domain • bounded mean oscillations • Clifford Algebras • differential forms • Divergence Theorem • First-Order System • Gauss-Green theorem • Hardy-Littlewood maximal function • Integration by parts • nontangentially accessible boundary • nontangential maximal function • NTA domain • quasi-metric spaces • regular SKT domain • Reifenberg flat domain • Riemannian manifold • spaces of homogenous type • Stokes Theorem • uniform domain • vanishing mean oscillations |
ISBN-10 | 3-031-05949-2 / 3031059492 |
ISBN-13 | 978-3-031-05949-0 / 9783031059490 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich