Witt groups of isotropic Grassmann bundles
Seiten
The goal of this work is to compute the Witt groups of maximal isotropic Grassmann bundles, that is, schemes parametrizing subbundles of maximal rank of a fixed vector bundle which are isotropic with respect to a given symmetric or symplectic bilinear form. The case of ordinary Grassmannians has been accomplished by Balmer and Calmès by investigating the boundary map in the localization long exact sequence of Witt groups. We prove that the total Witt group is parametrized by even shifted Young diagrams in the orthogonal case and by almost even shifted Young diagrams in the symplectic case.
Erscheinungsdatum | 20.05.2022 |
---|---|
Reihe/Serie | Berichte aus der Mathematik |
Verlagsort | Düren |
Sprache | englisch |
Maße | 148 x 210 mm |
Gewicht | 195 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Algebraic Geometry • Grassmannians • Schubert calculus • Witt groups |
ISBN-10 | 3-8440-8544-0 / 3844085440 |
ISBN-13 | 978-3-8440-8544-0 / 9783844085440 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
39,99 €