Logic-Driven Traffic Big Data Analytics - Shaopeng Zhong, Daniel (Jian) Sun

Logic-Driven Traffic Big Data Analytics (eBook)

Methodology and Applications for Planning
eBook Download: PDF
2022 | 1st ed. 2022
XXII, 280 Seiten
Springer Singapore (Verlag)
978-981-16-8016-8 (ISBN)
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book starts from the relationship between urban built environment and travel behavior and focuses on analyzing the origin of traffic phenomena behind the data through multi-source traffic big data, which makes the book unique and different from the previous data-driven traffic big data analysis literature. This book focuses on understanding, estimating, predicting, and optimizing mobility patterns. Readers can find multi-source traffic big data processing methods, related statistical analysis models, and practical case applications from this book.

 

This book bridges the gap between traffic big data, statistical analysis models, and mobility pattern analysis with a systematic investigation of traffic big data's impact on mobility patterns and urban planning.




Dr. Shaopeng Zhong is a professor in Institute of Smart City and Intelligent Transportation at Southwest Jiaotong University. In 2005, he received his bachelor's degree in transportation engineering from Harbin Institute of Technology, China. In 2010, he obtained his doctorate from Southeast University, China. He is a visiting scholar in urban and regional planning at University of North Carolina at Chapel Hill (2008-2010). He is a guest professor at Technical University of Denmark (2017-2018).

He has more than 20 years of professional experience in the field of sustainable urban planning and transportation planning, land use and transportation integration modeling, road congestion pricing, logic-driven transport big data analysis, emergency logistics, and shared autonomous mobility. He has written and published four books and more than thirty scientific papers in the top journals in the field of transportation planning, such as Transportation Research Part A, C, and E, European Journal of Operational Research, Journal of Transport Geography, Computers, Environment and Urban Systems, Journal of Transport & Health, Journal of Transport and Land Use, and Journal of Transportation Engineering.

He is a member of the Youth Expert Committee of China Intelligent Transportation Systems Association and a member of the Intelligent Transportation Professional Committee of China artificial intelligence society. He is the guest editor of Journal of Transport and Land Use and Journal of Advanced Transportation, editorial board member of Transportation Letters, Transportation Management, Journal of Civil Engineering Inter Disciplinaries, and Frontiers in Future Transportation. He is the chairman of the traffic behavior investigation and analysis technical committee of the World Transport Convention. He is the organizing committee and scientific committee of seven international conferences, such as the International Workshop on Integrated Land Use and Transport Modeling (ILUTM), 6th International Symposium on Travel Demand Management (TDM), Transportation Research Congress (TRC), etc.

Personal website: http://faculty.dlut.edu.cn/2010011103/en/index.htm

Dr. Daniel (Jian) Sun is a professor and executive dean of School of Future Transportation, Chang'an University. He has been working as director and professor of Smart City and Intelligent Transportation (SCIT) Interdisplinary Center, Shanghai Jiao Tong University (2011-2021). He obtained his Ph.D. in Transportation Research Center, University of Florida in 2009, and has been a senior visiting scholar at ETH-Zurich (2018.9-2019.3). His main research interests include urban transportation planning and land use, traffic control, urban driver behavior and simulation, urban transportation environment. He has serving as the committee chair of Smart City and Intelligent Transportation sub-committee in World Transport Convention (WTC) and has published more than 60 SCI/SSCI indexed journal papers since 2010, and has more than 30 papers accepted and presented in TRB annual meeting. He has been served in editorial committee board of several journals, including Transportation Research Interdisciplinary Perspectives (since 2019), Journal of International Transportation (since 2012), Journal of Traffic and Transportation Engineering (English Version) (since 2014), and the chief member of road and traffic engineering sub-committee, Shanghai Society of Civil Engineering (since 2012). Moreover, he has been an Expert Reviewer for the Transportation Science & Technology Project, Ministry of Transport, China, and the National Science & Technology Award since 2014.

Personal website: http://js.chd.edu.cn/jiaotong/sj2_en/list.htm



This book starts from the relationship between urban built environment and travel behavior and focuses on analyzing the origin of traffic phenomena behind the data through multi-source traffic big data, which makes the book unique and different from the previous data-driven traffic big data analysis literature. This book focuses on understanding, estimating, predicting, and optimizing mobility patterns. Readers can find multi-source traffic big data processing methods, related statistical analysis models, and practical case applications from this book. This book bridges the gap between traffic big data, statistical analysis models, and mobility pattern analysis with a systematic investigation of traffic big data s impact on mobility patterns and urban planning.
Erscheint lt. Verlag 1.2.2022
Zusatzinfo XXII, 280 p. 96 illus., 82 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Wirtschaft Allgemeines / Lexika
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte Built Environment and Travel Behavior • machine learning • Multi-source Big Data • Policy Optimization • Statistical Analysis • Traffic Big Data • Traffic Safety • Transportation planning • Travel Demand and Pattern Analysis • urban planning
ISBN-10 981-16-8016-7 / 9811680167
ISBN-13 978-981-16-8016-8 / 9789811680168
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Wie Unternehmen Daten zur Skalierung ihres Geschäfts nutzen können

von Jonas Rashedi

eBook Download (2024)
Springer Fachmedien Wiesbaden (Verlag)
27,99