Business Analytics (eBook)

Data Science for Business Problems
eBook Download: PDF
2022 | 1st ed. 2021
XXXVIII, 387 Seiten
Springer International Publishing (Verlag)
978-3-030-87023-2 (ISBN)

Lese- und Medienproben

Business Analytics - Walter R. Paczkowski
Systemvoraussetzungen
90,94 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book focuses on three core knowledge requirements for effective and thorough data analysis for solving business problems. These are a foundational understanding of:

1. statistical, econometric, and machine learning techniques;

2. data handling capabilities;

3. at least one programming language.

Practical in orientation, the volume offers illustrative case studies throughout and examples using Python in the context of Jupyter notebooks. Covered topics include demand measurement and forecasting, predictive modeling, pricing analytics, customer satisfaction assessment, market and advertising research, and new product development and research. This volume will be useful to business data analysts, data scientists, and market research professionals, as well as aspiring practitioners in business data analytics. It can also be used in colleges and universities offering courses and certifications in business data analytics, data science, and market research.




Walter R. Paczkowski, PhD, has worked at AT&T, AT&T Bell Labs, and AT&T Labs. He founded Data Analytics Corp., a statistical consulting company, in 2001. Dr. Paczkowski is also a part-time lecturer of economics at Rutgers University. He is the author of Deep Data Analytics for New Product Development (2020), Pricing Analytics: Models and Advanced Quantitative Techniques for Product Pricing (2018), and Market Data Analysis Using JMP (2016).


Erscheint lt. Verlag 3.1.2022
Zusatzinfo XXXVIII, 387 p. 238 illus., 215 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Allgemeines / Lexika
Wirtschaft Betriebswirtschaft / Management Marketing / Vertrieb
Schlagworte Business Analytics • Business Intelligence • classification • Data Cube • Data Science • Data Visualization • Econometrics • Logistic Regression • machine learning • Regression Analysis • Statistics
ISBN-10 3-030-87023-5 / 3030870235
ISBN-13 978-3-030-87023-2 / 9783030870232
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quellen der Erkenntnis oder digitale Orakel?

von Bernd Simeon

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
16,99
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
4,48