Abzähltheorie nach Pólya
Seiten
2022
|
1. Auflage
Springer Spektrum (Verlag)
978-3-658-36497-7 (ISBN)
Springer Spektrum (Verlag)
978-3-658-36497-7 (ISBN)
Dieses Buch führt anhand von Beispielen in die kombinatorische Abzählungstheorie nach Pólya ein.
Im Zentrum dieses essentials steht der gefeierte Abzählsatz von Pólya. Damit lassen sich kombinatorische Objekte mit Symmetrien abzählen, wie etwa Halsketten mit bunten Perlen und Würfel mit gefärbten Seiten, aber auch Graphen und Bäume.
Die Gruppentheorie wird dafür benutzt, die Symmetrien der abzuzählenden Figuren zu beschreiben. Darauf aufbauend kann anhand der Operation der jeweiligen Symmetriegruppe auf den gefärbten Figuren die Anzahl der verschiedenen Muster ermittelt werden.
Grundlegend hierfür ist das Lemma von Burnside. Aus seiner gewichteten Fassung wird unter Einbeziehung der Zyklenindexpolynome von Symmetriegruppen der berühmte Pólyasche Satz hergeleitet.
Einige Beispiele runden die Darstellung ab.
Im Zentrum dieses essentials steht der gefeierte Abzählsatz von Pólya. Damit lassen sich kombinatorische Objekte mit Symmetrien abzählen, wie etwa Halsketten mit bunten Perlen und Würfel mit gefärbten Seiten, aber auch Graphen und Bäume.
Die Gruppentheorie wird dafür benutzt, die Symmetrien der abzuzählenden Figuren zu beschreiben. Darauf aufbauend kann anhand der Operation der jeweiligen Symmetriegruppe auf den gefärbten Figuren die Anzahl der verschiedenen Muster ermittelt werden.
Grundlegend hierfür ist das Lemma von Burnside. Aus seiner gewichteten Fassung wird unter Einbeziehung der Zyklenindexpolynome von Symmetriegruppen der berühmte Pólyasche Satz hergeleitet.
Einige Beispiele runden die Darstellung ab.
Dr. Karl-Heinz Zimmermann studierte Informatik und Mathematik an der Universität Erlangen-Nürnberg. Er promovierte dort in Theoretischer Informatik und habilitierte in Mathematik an der Universität Bayreuth. Er war Fulbright-Stipendiat an der Princeton Universität und Heisenberg-Stipendiat an der Universität Karlsruhe (TH). Er ist seit 25 Jahren Professor für Informatik an der Technischen Universität Hamburg und Autor von mehreren Forschungsmonographien sowie von über 120 wissenschaftlichen Forschungspublikationen.
Einfuhrung in die kombinatorische Abzählung
Algebraische Grundlagen
Zentrale Konzepte
Abzählung nach Pólya
Historie und Zusammenfassung.
Erscheinungsdatum | 02.03.2022 |
---|---|
Reihe/Serie | essentials |
Zusatzinfo | VII, 73 S. 22 Abb. |
Verlagsort | Wiesbaden |
Sprache | deutsch |
Maße | 148 x 210 mm |
Gewicht | 121 g |
Einbandart | kartoniert |
Themenwelt | Informatik ► Theorie / Studium ► Theoretische Informatik |
Mathematik / Informatik ► Mathematik ► Algebra | |
Schlagworte | Abzählende Kombinatorik • Abzählsatz von Pólya • Abzähltheorie nach Pólya • Abzählung von Mustern • Anzahlbestimmung von Mustern • Burnside-Lemma • Kombinatorische Abzählungstheorie • Lemma von Burnside • Pólyas Abzähl-Theorie • Zykelindikatorpolynome |
ISBN-10 | 3-658-36497-1 / 3658364971 |
ISBN-13 | 978-3-658-36497-7 / 9783658364977 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Hardcover (2012)
Westermann Schulbuchverlag
34,95 €
Schulbuch Klassen 7/8 (G9)
Buch | Hardcover (2015)
Klett (Verlag)
30,50 €
Buch | Softcover (2004)
Cornelsen Verlag
25,25 €