Für diesen Artikel ist leider kein Bild verfügbar.

Stochastic Limit Theory (eBook)

An Introduction for Econometricians
eBook Download: PDF
2021
562 Seiten
OUP Oxford (Verlag)
978-0-19-265879-1 (ISBN)
Systemvoraussetzungen
43,65 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Stochastic Limit Theory, published in 1994, has become a standard reference in its field. Now reissued in a new edition, offering updated and improved results and an extended range of topics, Davidson surveys asymptotic (large-sample) distribution theory with applications to econometrics, with particular emphasis on the problems of time dependence and heterogeneity. The book is designed to be useful on two levels. First, as a textbook and reference work, giving definitions of the relevant mathematical concepts, statements, and proofs of the important results from the probability literature, and numerous examples; and second, as an account of recent work in the field of particular interest to econometricians. It is virtually self-contained, with all but the most basic technical prerequisites being explained in their context; mathematical topics include measure theory, integration, metric spaces, and topology, with applications to random variables, and an extended treatment of conditional probability. Other subjects treated include: stochastic processes, mixing processes, martingales, mixingales, and near-epoch dependence; the weak and strong laws of large numbers; weak convergence; and central limit theorems for nonstationary and dependent processes. The functional central limit theorem and its ramifications are covered in detail, including an account of the theoretical underpinnings (the weak convergence of measures on metric spaces), Brownian motion, the multivariate invariance principle, and convergence to stochastic integrals. This material is of special relevance to the theory of cointegration. The new edition gives updated and improved versions of many of the results and extends the coverage of many topics, in particular the theory of convergence to alpha-stable limits of processes with infinite variance.
Erscheint lt. Verlag 4.11.2021
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 0-19-265879-4 / 0192658794
ISBN-13 978-0-19-265879-1 / 9780192658791
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quellen der Erkenntnis oder digitale Orakel?

von Bernd Simeon

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
16,99
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
4,48