Algorithmic Learning Theory
Springer Berlin (Verlag)
978-3-540-20291-2 (ISBN)
Invited Papers.- Abduction and the Dualization Problem.- Signal Extraction and Knowledge Discovery Based on Statistical Modeling.- Association Computation for Information Access.- Efficient Data Representations That Preserve Information.- Can Learning in the Limit Be Done Efficiently?.- Inductive Inference.- Intrinsic Complexity of Uniform Learning.- On Ordinal VC-Dimension and Some Notions of Complexity.- Learning of Erasing Primitive Formal Systems from Positive Examples.- Changing the Inference Type - Keeping the Hypothesis Space.- Learning and Information Extraction.- Robust Inference of Relevant Attributes.- Efficient Learning of Ordered and Unordered Tree Patterns with Contractible Variables.- Learning with Queries.- On the Learnability of Erasing Pattern Languages in the Query Model.- Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries.- Learning with Non-linear Optimization.- Kernel Trick Embedded Gaussian Mixture Model.- Efficiently Learning the Metric with Side-Information.- Learning Continuous Latent Variable Models with Bregman Divergences.- A Stochastic Gradient Descent Algorithm for Structural Risk Minimisation.- Learning from Random Examples.- On the Complexity of Training a Single Perceptron with Programmable Synaptic Delays.- Learning a Subclass of Regular Patterns in Polynomial Time.- Identification with Probability One of Stochastic Deterministic Linear Languages.- Online Prediction.- Criterion of Calibration for Transductive Confidence Machine with Limited Feedback.- Well-Calibrated Predictions from Online Compression Models.- Transductive Confidence Machine Is Universal.- On the Existence and Convergence of Computable Universal Priors.
Erscheint lt. Verlag | 7.10.2003 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XII, 320 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 233 mm |
Gewicht | 467 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | algorithm • Algorithm analysis and problem complexity • Algorithmic Learning • Algorithmic Learning Theory • algorithms • Complexity • Computational Learning • concept learning • Data Mining • Heuristics • Inductive Inference • Knowledge Discovery • Learning Algorithms • machine learning • Modeling • Neural Network Learning • Optimization • Statistical Learning • Support Vector Machines • Variable |
ISBN-10 | 3-540-20291-9 / 3540202919 |
ISBN-13 | 978-3-540-20291-2 / 9783540202912 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich