Extreme Value Theory with Applications to Natural Hazards (eBook)

From Statistical Theory to Industrial Practice
eBook Download: PDF
2021 | 1st ed. 2021
XXII, 481 Seiten
Springer International Publishing (Verlag)
978-3-030-74942-2 (ISBN)

Lese- und Medienproben

Extreme Value Theory with Applications to Natural Hazards -
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This richly illustrated book describes statistical extreme value theory for the quantification of natural hazards, such as strong winds, floods and rainfall, and discusses an interdisciplinary approach to allow the theoretical methods to be applied. The approach consists of a number of steps: data selection and correction, non-stationary theory (to account for trends due to climate change), and selecting appropriate estimation techniques based on both decision-theoretic features (e.g., Bayesian theory), empirical robustness and a valid treatment of uncertainties. It also examines and critically reviews alternative approaches based on stochastic and dynamic numerical models, as well as recently emerging data analysis issues and presents large-scale, multidisciplinary, state-of-the-art case studies. 

Intended for all those with a basic knowledge of statistical methods interested in the quantification of natural hazards, the book is also a valuable resource for engineers conducting risk analyses in collaboration with scientists from other fields (such as hydrologists, meteorologists, climatologists). 



Dr. Nicolas Bousquet is a mathematician specializing in probability and statistics. Trained in computer science, he received his Ph.D in Mathematics from the Paris XI University in 2006. He has developed Bayesian modeling methodologies to merge heterogeneous sources of information into decision support problems in uncertain environments, methods for sensitivity analysis and Monte Carlo acceleration methods within complex numerical models. Awarded Best Young European Statistician by ENBIS in 2016, he worked in industrial risk and environmental resource management at EDF R&D for 9 years and in collaboration with many public and international research centers. He was also an associate researcher at the Institut de Mathématique de Toulouse. Between 2017 and 2020, he was in charge of R&D at Quantmetry, a consulting firm specializing in Artificial Intelligence (AI), while also serving as an Associate Professor at Sorbonne University. He has published about 40 research articles and book chapters and in 2018 he directed the production of the first scientific book translated using artificial intelligence tools (Deep Learning, by Goodfellow, Bengio and Courville). Still an Associate Professor, he is currently the Deputy Head of the industrial AI joint laboratory SINCLAIR (EDF-Total-Thales) and a Expert Researcher at EDF R&D. 

Dr. Pietro Bernardara is a hydrologist and holds a Ph.D from the Politechnico di Milano (2004). With a strong background in applied statistics, he has developed numerous techniques for quantifying extreme natural hazards in river and marine environments to mitigate industrial risks. After working as an expert researcher at EDF R&D, then as a Natural Hazard R&D Manager at EDF Energy (UK), he currently heads the CEREA (Centre for Teaching and Research in Atmospheric Environment) at the Ecole des Ponts ParisTech, as well as the 'Atmospheric Environment' Group at EDF R&D. He is the author or co-author of about thirty publications.

 

 


Erscheint lt. Verlag 9.10.2021
Zusatzinfo XXII, 481 p. 174 illus., 88 illus. in color.
Sprache englisch
Original-Titel Événements naturels extrêmes : théorie statistique et mitigation du risque
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Geowissenschaften Geologie
Wirtschaft Betriebswirtschaft / Management
Schlagworte Cumulated hazards • Downscaling • Extreme Floods • Extreme Temperature • Extreme value statistics • historical data • Maritime Storm • meteorology • Natural Hazards • Nonstationarity • Non-stationarity and climate change • Probabilistic Modelling • risk analysis • Stochastic and numerical modelling
ISBN-10 3-030-74942-8 / 3030749428
ISBN-13 978-3-030-74942-2 / 9783030749422
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 12,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich