Artificial Intelligence By Example (eBook)

Acquire advanced AI, machine learning, and deep learning design skills, 2nd Edition

(Autor)

eBook Download: EPUB
2020
578 Seiten
Packt Publishing (Verlag)
978-1-83921-281-9 (ISBN)

Lese- und Medienproben

Artificial Intelligence By Example - Denis Rothman
35,41 € inkl. MwSt
Systemvoraussetzungen
36,59 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Understand the fundamentals and develop your own AI solutions in this updated edition packed with many new examples




Key Features



  • AI-based examples to guide you in designing and implementing machine intelligence


  • Build machine intelligence from scratch using artificial intelligence examples


  • Develop machine intelligence from scratch using real artificial intelligence



Book Description



AI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples.







This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs).







This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing.







By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions.




What you will learn



  • Apply k-nearest neighbors (KNN) to language translations and explore the opportunities in Google Translate


  • Understand chained algorithms combining unsupervised learning with decision trees


  • Solve the XOR problem with feedforward neural networks (FNN) and build its architecture to represent a data flow graph


  • Learn about meta learning models with hybrid neural networks


  • Create a chatbot and optimize its emotional intelligence deficiencies with tools such as Small Talk and data logging


  • Building conversational user interfaces (CUI) for chatbots


  • Writing genetic algorithms that optimize deep learning neural networks


  • Build quantum computing circuits



Who this book is for



Developers and those interested in AI, who want to understand the fundamentals of Artificial Intelligence and implement them practically. Prior experience with Python programming and statistical knowledge is essential to make the most out of this book.


Understand the fundamentals and develop your own AI solutions in this updated edition packed with many new examplesKey FeaturesAI-based examples to guide you in designing and implementing machine intelligenceBuild machine intelligence from scratch using artificial intelligence examplesDevelop machine intelligence from scratch using real artificial intelligenceBook DescriptionAI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples.This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs).This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing.By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions.What you will learnApply k-nearest neighbors (KNN) to language translations and explore the opportunities in Google TranslateUnderstand chained algorithms combining unsupervised learning with decision treesSolve the XOR problem with feedforward neural networks (FNN) and build its architecture to represent a data flow graphLearn about meta learning models with hybrid neural networksCreate a chatbot and optimize its emotional intelligence deficiencies with tools such as Small Talk and data loggingBuilding conversational user interfaces (CUI) for chatbotsWriting genetic algorithms that optimize deep learning neural networksBuild quantum computing circuitsWho this book is forDevelopers and those interested in AI, who want to understand the fundamentals of Artificial Intelligence and implement them practically. Prior experience with Python programming and statistical knowledge is essential to make the most out of this book.
Erscheint lt. Verlag 28.2.2020
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte artificial general intelligence • Chatbots • Deep learning • evolutionary algorithms • Genetic algorithms • heuristicsearch • Hybrid Neural Networks • machine learning • Natural Language Processing • neural network • neuromorphic computing • OpenAI • q learning • SVM
ISBN-10 1-83921-281-0 / 1839212810
ISBN-13 978-1-83921-281-9 / 9781839212819
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 14,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43