Proofs that Really Count - Arthur T. Benjamin, Jennifer J. Quinn

Proofs that Really Count

The Art of Combinatorial Proof
Buch | Hardcover
206 Seiten
2003
Mathematical Association of America (Verlag)
978-0-88385-333-7 (ISBN)
63,60 inkl. MwSt
  • Titel erscheint in neuer Auflage
  • Artikel merken
Award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns can be understood by simple counting arguments. Numerous hints and references are given for all exercises and the extensive appendix of identities will be a valuable resource. Ideal for readers from high school students to professional mathematicians.
Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.

1. Fibonacci identities; 2. Lucas identities; 3. Gibonacci identities; 4. Linear recurrences; 5. Continued fractions; 6. Binomial identities; 7. Alternating sign binomial identities; 8. Harmonic numbers and Stirling numbers; 9. Number theory; 10. Advanced Fibonacci and Lucas identities.

Erscheint lt. Verlag 13.11.2003
Reihe/Serie Dolciani Mathematical Expositions
Zusatzinfo 100 Line drawings, unspecified
Verlagsort Washington
Sprache englisch
Maße 185 x 262 mm
Gewicht 518 g
Themenwelt Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 0-88385-333-7 / 0883853337
ISBN-13 978-0-88385-333-7 / 9780883853337
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Sieben ausgewählte Themenstellungen

von Hartmut Menzer; Ingo Althöfer

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
64,95
unlock your imagination with the narrative of numbers

von Dave Kester; Mikaela Ashcroft

Buch | Softcover (2024)
Advantage Media Group (Verlag)
19,90

von Martin Aigner; Günter M. Ziegler

Buch | Hardcover (2018)
Springer Berlin (Verlag)
69,54