Data Mining Techniques for the Life Sciences -

Data Mining Techniques for the Life Sciences

Buch | Hardcover
390 Seiten
2022 | 3rd ed. 2022
Springer-Verlag New York Inc.
978-1-0716-2094-6 (ISBN)
213,99 inkl. MwSt
This third edition details new and updated methods and protocols on important databases and data mining tools. Chapters guides readers through archives of macromolecular sequences and three-dimensional structures, databases of protein-protein interactions, methods for prediction conformational disorder, mutant thermodynamic stability, aggregation, and drug response. Quality of structural data and their release, soft mechanics applications in biology, and protein flexibility are considered, too, together with pan-genome analyses, rational drug combination screening and Omics Deep Mining. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials, includes step-by-step, readily reproducible protocols.



 



Authoritative and cutting-edge, Data Mining Techniques for the Life Sciences, Third Edition aims to be a practical guide to researches to help furthertheir study in this field.

 EBI data resources.- IMEx databases: displaying molecular interactions into a single, standards-compliant dataset.- Protein Three-dimensional Structure Databases.- Predicting protein conformational disorder and disordered binding sites.- Profiles of natural and designed protein-like sequences effectively bridge protein sequence gaps: Implications in distant homology detection.- Turning failures into applications: the problem of protein ΔΔG prediction.- Dissecting the genome for drug response prediction.- Prediction of the effect of pH on the aggregation and conditional folding of intrinsically disordered proteins with SolupHred and DispHred.- Extracting the dynamic motion of proteins using Normal Mode Analysis.- Pre- and Post- Publication Verification for Reproducible Data Mining in Macromolecular Crystallography.- Soft Statistical Mechanics for Biology.- Uses and abuses of the atomic displacement parameters in structural biology.- Optimizing the Parametrization of Homologue Classification in the Pan-Genome Computation for a Bacterial Species: Case Study Streptococcus pyogenes.- Computational pipeline for rational drug combination screening in patient-derived cells.- Deep Mining from Omics Data.

Erscheinungsdatum
Reihe/Serie Methods in Molecular Biology ; 2449
Zusatzinfo 77 Illustrations, color; 11 Illustrations, black and white; XIII, 390 p. 88 illus., 77 illus. in color.
Verlagsort New York, NY
Sprache englisch
Maße 178 x 254 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Weitere Themen Bioinformatik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Schlagworte Artifical Intelligence • Computational Docking • genome databases • machine learning • Protein-protein complex databases • Text Mining
ISBN-10 1-0716-2094-0 / 1071620940
ISBN-13 978-1-0716-2094-6 / 9781071620946
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95