Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data -

Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data

4th International Workshop, iMIMIC 2021, and 1st International Workshop, TDA4MedicalData 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings
Buch | Softcover
X, 129 Seiten
2021 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-87443-8 (ISBN)
58,84 inkl. MwSt
This book constitutes the refereed joint proceedings of the 4th International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, and the First International Workshop on Topological Data Analysis and Its Applications for Medical Data, TDA4MedicalData 2021, held on September 27, 2021, in conjunction with the 24th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2021.

The 7 full papers presented at iMIMIC 2021 and 5 full papers held at TDA4MedicalData 2021 were carefully reviewed and selected from 12 submissions each. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. TDA4MedicalData is focusing on using TDA techniques to enhance the performance, generalizability, efficiency, and explainability of the current methods applied to medical data.

iMIMIC 2021 Workshop.- Interpretable Deep Learning for Surgical Tool Management.- Soft Attention Improves Skin Cancer Classification Performance.- Deep Gradient based on Collective Arti cial Intelligence for AD Diagnosis and Prognosis.- This explains That: Congruent Image-Report Generation for Explainable Medical Image Analysis with Cyclic Generative Adversarial Networks.- Visual Explanation by Unifying Adversarial Generation and Feature Importance Attributions.- The Effect of the Loss on Generalization: Empirical Study on Synthetic Lung Nodule Data.- Voxel-level Importance Maps for Interpretable Brain Age Estimation.- TDA4MedicalData Workshop.- Lattice Paths for Persistent Diagrams.- Neighborhood complex based machine learning (NCML) models for drug design.- Predictive modelling of highly multiplexed tumour tissue images by graph neural networks.- Statistical modeling of pulmonary vasculatures with topological priors in CT volumes.- Topological Detection of Alzheimer's Disease using Betti Curves.

 

Erscheinungsdatum
Reihe/Serie Image Processing, Computer Vision, Pattern Recognition, and Graphics
Lecture Notes in Computer Science
Zusatzinfo X, 129 p. 3 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 226 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Analysis of Biomedical data • Applications • Classification methods • Computer Networks • Computer Science • Computer systems • computer vision • conference proceedings • Correlation Analysis • Deep learning • deep learning models for medical applications • evolutionary algorithms • Genetic algorithms • Image Analysis • Image Processing • Informatics • learning • machine learning • Medical signal processing • Network Protocols • Neural networks • Research • topological-based approaches
ISBN-10 3-030-87443-5 / 3030874435
ISBN-13 978-3-030-87443-8 / 9783030874438
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
19,95
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
24,95