Equations of Motion for Incompressible Viscous Fluids - Tujin Kim, Daomin Cao

Equations of Motion for Incompressible Viscous Fluids

With Mixed Boundary Conditions

, (Autoren)

Buch | Hardcover
XIII, 364 Seiten
2021 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-78658-8 (ISBN)
139,09 inkl. MwSt

This monograph explores the motion of incompressible fluids by presenting and incorporating various boundary conditions possible for real phenomena. The authors' approach carefully walks readers through the development of fluid equations at the cutting edge of research, and the applications of a variety of boundary conditions to real-world problems. Special attention is paid to the equivalence between partial differential equations with a mixture of various boundary conditions and their corresponding variational problems, especially variational inequalities with one unknown. A self-contained approach is maintained throughout by first covering introductory topics, and then moving on to mixtures of boundary conditions, a thorough outline of the Navier-Stokes equations, an analysis of both the steady and non-steady Boussinesq system, and more. Equations of Motion for Incompressible Viscous Fluids is ideal for postgraduate students and researchers in the fields of fluid equations, numerical analysis, and mathematical modelling.

Miscellanea of Analysis.- Fluid Equations.- The Steady Navier-Stokes System.- The Non-steady Navier-Stokes System.- The Steady Navier-Stokes System with Friction Boundary Conditions.- The Non-steady Navier-Stokes System with Friction Boundary Conditions.- The Steady Boussinesq System.- The Non-steady Boussinesq System.- The Steady Equations for Heat-conducting Fluids.- The Non-steady Equations for Heat-conducting Fluids.

Erscheinungsdatum
Reihe/Serie Advances in Mathematical Fluid Mechanics
Zusatzinfo XIII, 364 p. 1 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 727 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Schlagworte Banach space fluid mechanics • Fluid mechanics friction boundary • Heat-conducting fluids • Leak boundary conditions • Lebesgue space fluid mechanics • mixed boundary conditions • navier-stokes equations • Navier-Stokes non-steady • Navier-Stokes steady • pressure boundary conditions • Sobolev space fluid mechanics • Steady Boussinesq system • Stress boundary conditions • Tresca slip boundary conditions • Variational inequality fluid mechanics • Vorticity boundary conditions
ISBN-10 3-030-78658-7 / 3030786587
ISBN-13 978-3-030-78658-8 / 9783030786588
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich