Modern Dimension Reduction - Philip D. Waggoner

Modern Dimension Reduction

Buch | Softcover
75 Seiten
2021
Cambridge University Press (Verlag)
978-1-108-98689-2 (ISBN)
21,20 inkl. MwSt
Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace.
Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github.

1. Introduction; 2. A Classic Approach to Dimension Reduction; 3. Locally Linear Embedding; 4. Nonlinear Dimension Reduction for Visualization; 5. Neural Network-Based Approaches; 6. Final Thoughts on Dimension Reduction.

Erscheinungsdatum
Reihe/Serie Elements in Quantitative and Computational Methods for the Social Sciences
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Maße 152 x 229 mm
Gewicht 160 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Sozialwissenschaften
ISBN-10 1-108-98689-7 / 1108986897
ISBN-13 978-1-108-98689-2 / 9781108986892
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95