Design Patterns für Machine Learning

Entwurfsmuster für Datenaufbereitung, Modellbildung und MLOps – Best Practices für die gesamte ML-Pipeline
Buch | Softcover
432 Seiten
2021 | 1. Auflage
O'Reilly (Verlag)
978-3-96009-164-6 (ISBN)
44,90 inkl. MwSt
Bewährte Praxislösungen für komplexe Machine-Learning-Aufgaben

  • Behandelt alle Phasen der ML-Produktpipeline
  • Klar strukturierter Aufbau, der dafür sorgt, dass sich Konzepte und Zusammenhänge rasch erschließen
  • Fokus auf TensorFlow, aber auch übertragbar auf PyTorch-Projekte

Die Design Patterns in diesem Buch zeigen praxiserprobte Methoden und Lösungen für wiederkehrende Aufgaben beim Machine Learning. Die Autoren, drei Machine-Learning-Experten bei Google, beschreiben bewährte Herangehensweisen, um Data Scientists und Data Engineers bei der Lösung gängiger Probleme im gesamten ML-Prozess zu unterstützen. Die Patterns bündeln die Erfahrungen von Hunderten von Experten und bieten einfache, zugängliche Best Practices.

In diesem Buch finden Sie detaillierte Erläuterungen zu 30 Patterns für diese Themen: Daten- und Problemdarstellung, Operationalisierung, Wiederholbarkeit, Reproduzierbarkeit, Flexibilität, Erklärbarkeit und Fairness. Jedes Pattern enthält eine Beschreibung des Problems, eine Vielzahl möglicher Lösungen und Empfehlungen für die Auswahl der besten Technik für Ihre Situation.

Erfahren Sie, wie Sie:
  • Herausforderungen beim Trainieren, Bewerten und Deployen von ML-Modellen erkennen und überwinden
  • Daten für verschiedene ML-Modelltypen mit Einbettungen, Feature Crosses und mehr darstellen
  • den richtigen Modelltyp für bestimmte Fragestellungen auswählen
  • eine robuste Trainingsschleife mit Checkpoints, Verteilungsstrategie und Hyperparameter-Tuning erstellen
  • skalierbare ML-Systeme deployen, die bei erneutem Training aktuelle Daten berücksichtigen
  • Modellvorhersagen für Stakeholder interpretieren
  • Modellgenauigkeit, Reproduzierbarkeit, Resilienz und Fairness verbessern

Valliappa Lakshmanan ist Global Head für Datenanalyse und KI-Lösungen bei Google Cloud.

Sara Robinson ist Developer Advocate im Google-Cloud-Team, sie ist spezialisiert auf Machine Learning.

Michael Munn ist ML Solutions Engineer bei Google. Er unterstützt Kunden bei der Entwicklung, Implementierung und Bereitstellung von Machine-Learning-Modellen.

Erscheinungsdatum
Reihe/Serie Animals
Übersetzer Frank Langenau
Verlagsort Heidelberg
Sprache deutsch
Maße 165 x 240 mm
Einbandart kartoniert
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Schlagworte AI • Artificial Intelligence • Deep learning • DevOps • Entwurfsmuster • KI • Künstliche Intelligenz • machine learning • Machine Learning Operations • Maschinelles Lernen • Neuronale Netze • Python • PyTorch • scikit-learn • Statistische Datenanalyse • tensorflow
ISBN-10 3-96009-164-8 / 3960091648
ISBN-13 978-3-96009-164-6 / 9783960091646
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich