Design Patterns für Machine Learning
Entwurfsmuster für Datenaufbereitung, Modellbildung und MLOps – Best Practices für die gesamte ML-Pipeline
Seiten
2021
|
1. Auflage
O'Reilly (Verlag)
978-3-96009-164-6 (ISBN)
O'Reilly (Verlag)
978-3-96009-164-6 (ISBN)
Bewährte Praxislösungen für komplexe Machine-Learning-Aufgaben
Die Design Patterns in diesem Buch zeigen praxiserprobte Methoden und Lösungen für wiederkehrende Aufgaben beim Machine Learning. Die Autoren, drei Machine-Learning-Experten bei Google, beschreiben bewährte Herangehensweisen, um Data Scientists und Data Engineers bei der Lösung gängiger Probleme im gesamten ML-Prozess zu unterstützen. Die Patterns bündeln die Erfahrungen von Hunderten von Experten und bieten einfache, zugängliche Best Practices.
In diesem Buch finden Sie detaillierte Erläuterungen zu 30 Patterns für diese Themen: Daten- und Problemdarstellung, Operationalisierung, Wiederholbarkeit, Reproduzierbarkeit, Flexibilität, Erklärbarkeit und Fairness. Jedes Pattern enthält eine Beschreibung des Problems, eine Vielzahl möglicher Lösungen und Empfehlungen für die Auswahl der besten Technik für Ihre Situation.
Erfahren Sie, wie Sie:
- Behandelt alle Phasen der ML-Produktpipeline
- Klar strukturierter Aufbau, der dafür sorgt, dass sich Konzepte und Zusammenhänge rasch erschließen
- Fokus auf TensorFlow, aber auch übertragbar auf PyTorch-Projekte
Die Design Patterns in diesem Buch zeigen praxiserprobte Methoden und Lösungen für wiederkehrende Aufgaben beim Machine Learning. Die Autoren, drei Machine-Learning-Experten bei Google, beschreiben bewährte Herangehensweisen, um Data Scientists und Data Engineers bei der Lösung gängiger Probleme im gesamten ML-Prozess zu unterstützen. Die Patterns bündeln die Erfahrungen von Hunderten von Experten und bieten einfache, zugängliche Best Practices.
In diesem Buch finden Sie detaillierte Erläuterungen zu 30 Patterns für diese Themen: Daten- und Problemdarstellung, Operationalisierung, Wiederholbarkeit, Reproduzierbarkeit, Flexibilität, Erklärbarkeit und Fairness. Jedes Pattern enthält eine Beschreibung des Problems, eine Vielzahl möglicher Lösungen und Empfehlungen für die Auswahl der besten Technik für Ihre Situation.
Erfahren Sie, wie Sie:
- Herausforderungen beim Trainieren, Bewerten und Deployen von ML-Modellen erkennen und überwinden
- Daten für verschiedene ML-Modelltypen mit Einbettungen, Feature Crosses und mehr darstellen
- den richtigen Modelltyp für bestimmte Fragestellungen auswählen
- eine robuste Trainingsschleife mit Checkpoints, Verteilungsstrategie und Hyperparameter-Tuning erstellen
- skalierbare ML-Systeme deployen, die bei erneutem Training aktuelle Daten berücksichtigen
- Modellvorhersagen für Stakeholder interpretieren
- Modellgenauigkeit, Reproduzierbarkeit, Resilienz und Fairness verbessern
Valliappa Lakshmanan ist Global Head für Datenanalyse und KI-Lösungen bei Google Cloud.
Sara Robinson ist Developer Advocate im Google-Cloud-Team, sie ist spezialisiert auf Machine Learning.
Michael Munn ist ML Solutions Engineer bei Google. Er unterstützt Kunden bei der Entwicklung, Implementierung und Bereitstellung von Machine-Learning-Modellen.
Erscheinungsdatum | 04.11.2021 |
---|---|
Reihe/Serie | Animals |
Übersetzer | Frank Langenau |
Verlagsort | Heidelberg |
Sprache | deutsch |
Maße | 165 x 240 mm |
Einbandart | kartoniert |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Schlagworte | AI • Artificial Intelligence • Deep learning • DevOps • Entwurfsmuster • KI • Künstliche Intelligenz • machine learning • Machine Learning Operations • Maschinelles Lernen • Neuronale Netze • Python • PyTorch • scikit-learn • Statistische Datenanalyse • tensorflow |
ISBN-10 | 3-96009-164-8 / 3960091648 |
ISBN-13 | 978-3-96009-164-6 / 9783960091646 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Hardcover (2012)
Westermann Schulbuchverlag
34,95 €
Schulbuch Klassen 7/8 (G9)
Buch | Hardcover (2015)
Klett (Verlag)
30,50 €
Buch | Softcover (2004)
Cornelsen Verlag
25,25 €